Journal of Genetics

, Volume 91, Issue 2, pp 223–227 | Cite as

Improved transfection of HUVEC and MEF cells using DNA complexes with magnetic nanoparticles in an oscillating field

Research Note


magnetic nanoparticles transfection mouse embryonic fibroblasts human umbilical vein endothelial cells oscillating magnet array magnetofection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dobson J. 2006 Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther. 13, 283–287.PubMedCrossRefGoogle Scholar
  2. Dobson J. 2008 Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143.PubMedCrossRefGoogle Scholar
  3. Fouriki A., Farrow N., Clements M. A. and Dobson J. 2010 Evaluation of the magnetic field requirements for magnetic nanoparticle-based gene transfection. NanoReviews 1, 5167.Google Scholar
  4. Jenkins S. I., Pickard M. R., Granger N. and Chari D. M. 2011 Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano. 5, 6527–6538.PubMedCrossRefGoogle Scholar
  5. Kamau S. W., Hassa P. O., Steitz B., Petri-Fink A., Hofmann H., Hofmann-Amtenbrink H. et al. 2006 Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res. 34, e40.CrossRefGoogle Scholar
  6. Krötz F., Sohn H. Y., Glow T., Plank C. and Pohl U. 2003 Magnetofection potentiates gene delivery to cultured endothelial cells. J. Vasc. Res. 40, 425–434.PubMedCrossRefGoogle Scholar
  7. Lee C. H., Kim J. H., Lee H. J., Jeon K., Lim H., Choi H. et al. 2011 The generation of iPS cells using non-viral magnetic nanoparticle based transfection. Biomaterials 32, 6683–6691.PubMedCrossRefGoogle Scholar
  8. Liu Z., Zheng M., Meng F. and Zhong Z. 2011 Non-viral gene transfection in vitro using endosomal pH-sensitive reversibly hydrophobilized polyethylenimine. Biomaterials 32, 9109–9119.PubMedCrossRefGoogle Scholar
  9. McBain S. C., Griesenbach U., Xenariou S., Keramane A., Batich C. D., Alton E. W. et al. 2008 Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 19, 405102.PubMedCrossRefGoogle Scholar
  10. Muthana M., Scott S. D., Farrow N., Morrow F., Murdoch C., Grubb S. et al. 2008 A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Ther. 15, 902–910.PubMedCrossRefGoogle Scholar
  11. Nagata D., Takahashi M., Sawai K., Tagami T., Usui T., Shimatsu A. et al. 2006 Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension 48, 165–171.PubMedCrossRefGoogle Scholar
  12. Pickard M., and Chari D. 2010 Enhancement of magnetic nanoparticle-mediated gene transfer to astrocytes by ‘magnetofection’: effects of static and oscillating fields. Nanomedicine (Lond) 5, 217–232.CrossRefGoogle Scholar
  13. Plank C., Schillinger U., Scherer F., Bergemann C., Rémy J. S., Krötz F. et al. 2003 The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem. 384, 737–747.PubMedCrossRefGoogle Scholar
  14. Seki T., Irie N., Nakamura K., Sakaue H., Ogawa W., Kasuga M. et al. 2006 Fused protein of deltaPKC activation loop and PDK1-interacting fragment (deltaAL-PIF) functions as a pseudosubstrate and an inhibitory molecule for PDK1 when expressed in cells. Genes Cells 11, 1051–1070.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.nanoTherics Limited, Med IC4Keele University Science and Business ParkStaffordshireUK
  2. 2.J. Crayton Pruitt Family Department of Biomedical Engineering and Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  3. 3.Institute for Science and Technology in MedicineKeele UniversityStoke-on-TrentUK

Personalised recommendations