Journal of Genetics

, Volume 91, Issue 1, pp 111–117 | Cite as

Multiparent intercross populations in analysis of quantitative traits

  • SUJAY RAKSHITEmail author
  • J. V. PATIL
Review Article


Most traits of interest to medical, agricultural and animal scientists show continuous variation and complex mode of inheritance. DNA-based markers are being deployed to analyse such complex traits, that are known as quantitative trait loci (QTL). In conventional QTL analysis, F2, backcross populations, recombinant inbred lines, backcross inbred lines and double haploids from biparental crosses are commonly used. Introgression lines and near isogenic lines are also being used for QTL analysis. However, such populations have major limitations like predominantly relying on the recombination events taking place in the F1 generation and mapping of only the allelic pairs present in the two parents. The second generation mapping resources like association mapping, nested association mapping and multiparent intercross populations potentially address the major limitations of available mapping resources. The potential of multiparent intercross populations in gene mapping has been discussed here. In such populations both linkage and association analysis can be conductted without encountering the limitations of structured populations. In such populations, larger genetic variation in the germplasm is accessed and various allelic and cytoplasmic interactions are assessed. For all practical purposes, across crop species, use of eight founders and a fixed population of 1000 individuals are most appropriate. Limitations with multiparent intercross populations are that they require longer time and more resource to be generated and they are likely to show extensive segregation for developmental traits, limiting their use in the analysis of complex traits. However, multiparent intercross population resources are likely to bring a paradigm shift towards QTL analysis in plant species.


gene mapping QTL analysis multiparent intercross population MAGIC AMPRIL association mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwell S., Huang Y. S., Vilhjálmsson B. J., Willems G., Horton M., Li Y. et al. 2010 Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631.PubMedCrossRefGoogle Scholar
  2. Bandillo N., Muyco P. A., Caspillo C., Laza M., Sajise A. G., Singh R. K. et al. 2010 Development of multiparent advanced generation intercross (magic) populations for gene discovery in rice (Oryza sativa L.). Philipp. J. Crop Sci. 35, suppl 1, 96.Google Scholar
  3. Bentsink L., Hanson J., Hanhart C. J., Blankestijn-de Vries H., Coltrane C., Keizer P. et al. 2010 Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc. Natl. Acad. Sci. USA 107, 4264– 4269.PubMedCrossRefGoogle Scholar
  4. Brachi B., Faure N., Horton M., Flahauw E., Vazquez A., Nordborg M. et al. 2010 Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet. 6, 1–17.CrossRefGoogle Scholar
  5. Broman K. W. 2005 The genomes of recombinant inbred lines. Genetics 169, 1133–1146.PubMedCrossRefGoogle Scholar
  6. Broman K. W., Wu H., Sen S. and Churchill G. A. 2003 R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889– 890.PubMedCrossRefGoogle Scholar
  7. Buckler E. S., Holland J. B., Bradbury P. J., Acharya C. B., Brown P. J., Browne C. et al. 2009 The genetic architecture of maize flowering time. Science 325, 714–718.PubMedCrossRefGoogle Scholar
  8. Cavanagh C., Morell M., Mackay I. and Powell W. 2008 From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr. Opin. Plant Biol. 11, 215– 221.PubMedCrossRefGoogle Scholar
  9. Churchill G. A., Airey D. C., Allayee H., Angel J. M., Attie A. D., Beatty J. et al. 2004 The collaborative cross, a community resource for the genetic analysis of complex traits. Nat. Genet. 36, 1133–1137.PubMedCrossRefGoogle Scholar
  10. Collard B. C. Y., Jahufer M. Z. Z., Brouwer J. B. and Pang E. C. K. 2005 An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169–196.CrossRefGoogle Scholar
  11. Darvasi A. and Soller M. 1995 Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141, 199–1207.Google Scholar
  12. Darvasi A. and Soller M. 1997 A simple method to calculate resolving power and confidence interval of QTL map location. Behav. Genet. 27, 125–132.PubMedCrossRefGoogle Scholar
  13. Davey J. W., Hohenlohe P. A., Etter P. D., Boone J. Q., Catchen J. M. and Blaxter M. L. 2011 Genome-wide genetic marker discovery and genotyping using next- generation sequencing. Nat. Rev. Genet. 12, 499–510.PubMedCrossRefGoogle Scholar
  14. Ehrenreich I. M., Hanzawa Y., Chou L., Roe J. L., Kover P. X. and Purugganan M. D. 2009 Candidate gene association mapping of Arabidopsis flowering time. Genetics 183, 325–335.PubMedCrossRefGoogle Scholar
  15. Flint J., Valder W., Shifman S. and Mott R. 2005 Strategies for mapping and cloning quantitative trait genes in rodents. Nat. Rev. Genet. 6, 271–286.PubMedCrossRefGoogle Scholar
  16. Gelderman H. 1975 Investigations on inheritance of quantitative characters in animals by gene markers. Theor. Appl. Genet. 46, 319–330.CrossRefGoogle Scholar
  17. Goffinet B. and Gerber S. 2000 Quantitative trait loci: A meta analysis. Genetics 155, 463–473.PubMedGoogle Scholar
  18. Gupta P. K. 2002 Molecular markers and QTL analysis in crop plants. Curr. Sci. 83, 113–114.Google Scholar
  19. Gupta P. K., Rustgi S. and Kulwal P. L. 2005 Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol. Biol. 57, 461–485.PubMedCrossRefGoogle Scholar
  20. Gupta P. K., Langridge P. and Mir R. R. 2010 Marker–assisted wheat breeding: present status and future possibilities. Mol. Breed. 26, 145–161.CrossRefGoogle Scholar
  21. Hirschhorn J. N. and Daly M. J. 2005 Genome–wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108.PubMedCrossRefGoogle Scholar
  22. Huang B. E. and George A. W. 2011 R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 27, 727–729.PubMedCrossRefGoogle Scholar
  23. Huang X., Paulo M. J., Boer M., Effgen S., Keizer P., Koornneef M. and Eeuwijk F. V. 2011 Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc. Natl. Acad. Sci. USA 108, 4488–4493.PubMedCrossRefGoogle Scholar
  24. Keurentjes J. J., Bentsink L., Alonso-Blanco C., Hanhart C. J., Blankestijn-De Vries H., Effgen S. et al. 2007 Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175, 891–905.PubMedCrossRefGoogle Scholar
  25. Keurentjes J. J. B., Willems G., van Eeuwijk F., Nordborg M. and Koornneef M. 2011 A comparison of population type used for QTL mapping in Arabidopsis thaliana. Plant Genet. Res. 9, 185– 188.CrossRefGoogle Scholar
  26. Kover P. X., Valder W., Trakalo J., Scarcelli N., Ehrenreich I. M., Purugganan M. D. et al. 2009 A multiparent advanced generation inter–cross to fine map quantitative traits in Arabidopsis thaliana. PLoS Genet. 5, e1000551.CrossRefGoogle Scholar
  27. Leung H., McNally K., Thomson M., Bandillo N., Muyco P. and Singh R. K. 2011 Expanding and fine-tuning genetic resources for discovery of gene functions in rice. In Plant and animal genome conference, Sandiago (
  28. Li H., Hearne S., Banziger K., Li Z. and Wang J. 2010 Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105, 257–267.PubMedCrossRefGoogle Scholar
  29. Li R., Lyons M. A., Wittenburg H., Paigen B. and Churchill G. A. 2005 Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 169, 1699–1709.PubMedCrossRefGoogle Scholar
  30. Mackay T. F. C. 2004 The genetic architecture of quantitative traits: lessons from Drosophila. Curr. Opin. Genet. Dev. 14, 253– 257.PubMedCrossRefGoogle Scholar
  31. McMullen M. D., Kresovich S., Villeda H. S., Bradbury P., Li H., Sun Q. et al. 2009 Genetic properties of the maize nested association mapping population. Science 325, 737–740.PubMedCrossRefGoogle Scholar
  32. Mott R., Talbot C. J., Turri M. G., Collins A. C. and Flint J. 2000 A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 97, 12649–12654.PubMedCrossRefGoogle Scholar
  33. Nordborg M. and Weigel D. 2008 Next-generation genetics in plants. Nature 456, 720–723.PubMedCrossRefGoogle Scholar
  34. Rafalski J. A. 2010 Association genetics in crop improvement. Curr. Opin. Plant. Biol. 13, 174–180.PubMedCrossRefGoogle Scholar
  35. Rakshit S., Zaide P. H. and Mishra S. K. 2002 Molecular markers and tagging of genes in crop plants. In Advances in plant physiology, vol 4 (ed. A. Hemantaranjan), pp. 205–223. Scientific Publications, Jodhpur, India.Google Scholar
  36. Sax K. 1923 Association of size differences with seed–coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8, 552–560.PubMedGoogle Scholar
  37. Sturtevant A. H. 1913 The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 14, 43–59.CrossRefGoogle Scholar
  38. Valder W., Solberg L. C., Gauguier D., Burnett S., Klenerman P., Cookson W. O. et al. 2006 Genome–wide genetic association of complex traits in heterogeneous stock mice. Nat. Genet. 38, 879–887.CrossRefGoogle Scholar
  39. Varshney R. K., Nayak S. N., May G. D. and Jackson S. A. 2009 Next generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 27, 522–530.PubMedCrossRefGoogle Scholar
  40. Watson J. D. and Crick F. H. C. 1953 Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964–967.PubMedCrossRefGoogle Scholar
  41. Yalchin B., Flint J. and Mott R. 2005 Using progenitor strain information to identify quantitative trait nucleotides in out bred mice. Genetics 171, 673–681.CrossRefGoogle Scholar
  42. Yu J., Holland J. B., McMullen M. D. and Buckler E. S. 2008 Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539–551.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.Directorate of Sorghum ResearchHyderabadIndia
  2. 2.Central Research Institute for Dryland AgricultureHyderabadIndia

Personalised recommendations