Journal of Genetics

, Volume 90, Issue 3, pp 443–452 | Cite as

Male-limited evolution suggests no extant intralocus sexual conflict over the sexually dimorphic cuticular hydrocarbons of Drosophila melanogaster

  • N. G. PRASAD
Research Article


Sexually dimorphic traits are likely to have evolved through sexually antagonistic selection. However, recent empirical data suggest that intralocus sexual conflict often persists, even when traits have diverged between males and females. This implies that evolved dimorphism is often incomplete in resolving intralocus conflict, providing a mechanism for the maintenance of genetic variance in fitness-related traits. We used experimental evolution in Drosophila melanogaster to directly test for ongoing conflict over a suite of sexually dimorphic cuticular hydrocarbons (CHCs) that are likely targets of sex-specific selection. Using a set of experimental populations in which the transmission of genetic material had been restricted to males for 82 generations, we show that CHCs did not evolve, providing experimental evidence for the absence of current intralocus sexual conflict over these traits. The absence of ongoing conflict could indicate that CHCs have never been the target of sexually antagonistic selection, although this would require the existing dimorphism to have evolved via completely sex-linked mutations or as a result of former, but now absent, pleiotropic effects of the underlying loci on another trait under sexually antagonistic selection. An alternative interpretation, and which we believe to be more likely, is that the extensive CHC sexual dimorphism is the result of past intralocus sexual conflict that has been fully resolved, implying that these traits have evolved genetic independence between the sexes and that genetic variation in them is therefore maintained by alternative mechanisms. This latter interpretation is consistent with the known roles of CHCs in sexual communication in this species and with previous studies suggesting the genetic independence of CHCs between males and females. Nevertheless, direct estimates of sexually antagonistic selection will be important to fully resolve these alternatives.


cuticular hydrocarbons experimental evolution intralocus sexual conflict male-limited evolution sexual dimorphism Drosophila melanogaster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott J. K., Bedhomme S. and Chippindale A. K. 2010 Sexual conflict in wing size and shape in Drosophila melanogaster. J. Evol. Biol. 23, 1989–1997.PubMedCrossRefGoogle Scholar
  2. Aitchison J. 1986 The statistical analysis of compositional data. Chapman and Hall, London, UK.CrossRefGoogle Scholar
  3. Bedhomme S. and Chippindale A. K. 2007 Irreconcilable differences: when sexual dimorphism fails to resolve sexual conflict. In Sex, size and gender roles (ed. D. J. Fairbairn, W. U. Blanckenhorn and T. Székely). pp. 185–194. Oxford University Press, New York, USA.CrossRefGoogle Scholar
  4. Bedhomme S., Prasad N. G., Jiang P. P. and Chippindale A. K. 2008 Reproductive behaviour evolves rapidly when intralocus sexual conflict is removed. PLoS ONE 3, e2187.PubMedCrossRefGoogle Scholar
  5. Benjamini Y. and Hochberg Y. 1995 Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57 289–300.Google Scholar
  6. Bergerud W. A. 1996 Displaying factor relationships in experiments. Am. Stat. 50, 228–233.Google Scholar
  7. Billeter J. C., Atallah J., Krupp J. J., Millar J. G. and Levine J. D. 2009 Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461, 987–992.PubMedCrossRefGoogle Scholar
  8. Blows M. W. and Allan R. A. 1998 Levels of mate recognition within and between two Drosophila species and their hybrids. Am. Nat. 152, 826–837.PubMedCrossRefGoogle Scholar
  9. Bonduriansky R. and Chenoweth S. F. 2009 Intralocus sexual conflict. Trends Ecol. Evol. 24, 280–288.PubMedCrossRefGoogle Scholar
  10. Chenoweth S. F. and Blows M. W. 2003 Signal trait sexual dimorphism and mutual sexual selection in Drosophila serrata. Evolution 57, 2326–2334.PubMedGoogle Scholar
  11. Chenoweth S. F. and Blows M. W. 2005 Contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. Am. Nat. 165, 281–289.PubMedCrossRefGoogle Scholar
  12. Chenoweth S. F., Rundle H. D. and Blows M. W. 2008 Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. Am. Nat. 171, 22–34.PubMedCrossRefGoogle Scholar
  13. Chenoweth S. F., Rundle H. D. and Blows M. W. 2010 Experimental evidence for the evolution of indirect genetic effects: changes in the interaction effect coefficient, Psi, due to sexual selection. Evolution 64, 1849–1856.PubMedCrossRefGoogle Scholar
  14. Chippindale A. K. and Rice W. R. 2001 Y chromosome polymorphism is a strong determinant of male fitness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 98, 5677– 5682.PubMedCrossRefGoogle Scholar
  15. Cox R. M. and Calsbeek R. 2009 Sexually antagonistic selection, sexual dimorphism, and the resolution of intralocus sexual conflict. Am. Nat. 173, 176–187.PubMedCrossRefGoogle Scholar
  16. Coyne J. A., Crittenden A. P. and Mah K. 1994 Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science 265, 1461–1464.PubMedCrossRefGoogle Scholar
  17. Dallerac R., Labeur C., Jallon J. M., Knippie D. C., Roelofs W. L. and Wicker-Thomas C. 2000 A Delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 9449–9454.PubMedCrossRefGoogle Scholar
  18. Everaerts C., Lacaille F. and Ferveur J. F. 2010 Is mate choice in Drosophila males guided by olfactory or gustatory pheromones? Anim. Behav. 79, 1135–1146.CrossRefGoogle Scholar
  19. Fang S., Takahashi A. and Wu C. I. 2002 A mutation in the promoter of desaturase 2 is correlated with sexual isolation between Drosophila behavioral races. Genetics 162, 781–784.PubMedGoogle Scholar
  20. Ferveur J. F. 2005 Cuticular hydrocarbons: Their evolution and roles in Drosophila pheromonal communication. Behav. Genet. 35, 279–295.PubMedCrossRefGoogle Scholar
  21. Ferveur J. F. and Jallon J. M. 1993 Genetic control of pheromones in Drosophila simulans. 2. Kete, a locus on the X-chromosome. Genetics 133, 561–567.PubMedGoogle Scholar
  22. Ferveur J. F. and Sureau G. 1996 Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 263, 967–973.Google Scholar
  23. Foley B., Chenoweth S. F., Nuzhdin S. V. and Blows M. W. 2007 Natural genetic variation in cuticular hydrocarbon expression in male and female Drosophila melanogaster. Genetics 175, 1465–1477.PubMedCrossRefGoogle Scholar
  24. Gibbs A. G.1998 Water-proofing properties of cuticular lipids. Am. Zool. 38, 471–482.Google Scholar
  25. Gibbs A. G., Chippindale A. K. and Rose M. R. 1997 Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. J. Exp. Biol. 200, 1821–1832.PubMedGoogle Scholar
  26. Grillet M., Dartevelle L. and Ferveur J. F. 2006 A Drosophila male pheromone affects female sexual receptivity. Proc. R. Soc. London, Ser. B 273, 315–323.CrossRefGoogle Scholar
  27. Higgie M. and Blows M. W. 2008 The evolution of reproductive character displacement conflicts with how sexual selection operates within a species. Evolution 62, 1192–1203.PubMedCrossRefGoogle Scholar
  28. Higgie M., Chenoweth S. and Blows M. W. 2000 Natural selection and the reinforcement of mate recognition. Science 290, 519–521.PubMedCrossRefGoogle Scholar
  29. Howard R. W. and Blomquist G. J. 2005 Ecological, behavioral, andbiochemical aspects of insect hydrocarbons. Ann. Rev. Entomol. 50, 371–393.CrossRefGoogle Scholar
  30. Jiang P. P. , Bedhomme S., Prasad N. G. and Chippindale A. K. 2011 Sperm competition and mate harm unresponsive to male-limited selection in Drosophila: an evolving genetic architecture under domestication. Evolution 65, 2448–2460.PubMedCrossRefGoogle Scholar
  31. Kent C., Azanchi R., Smith B., Formosa A. and Levine J. D. 2008 Social context influences chemical communication in D. melanogaster males. Curr. Biol. 18, 1384–1389.PubMedCrossRefGoogle Scholar
  32. Kwan L. and Rundle H. D. 2010 Adaptation to desiccation fails to generate pre- and postmating isolation in replicate Drosophila melanogaster laboratory populations. Evolution 64, 710–723.PubMedCrossRefGoogle Scholar
  33. Long T. A. F. and Rice W. R. 2007 Adult locomotory activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proc. R. Soc. London, Ser. B 274, 3105–3112.CrossRefGoogle Scholar
  34. Nelson D. R. 1993 Methyl-branched lipids in insects. In Chemistry, biochemistry and biology (ed. D. W. Stanley-Samuelson and D. R. Nelson). pp. 271–315. University of Nebraska Press, Lincoln, USA.Google Scholar
  35. Newman J. A., Bergelson J. and Grafen A. 1997 Blocking factors and hypothesis tests in ecology: is your statistics text wrong? Ecology 78, 1312–1320.CrossRefGoogle Scholar
  36. Poissant J., Wilson A. J. and Coltman D. W. 2010 Sex-specific genetic variance and the evolution of sexual dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64, 97–107.PubMedCrossRefGoogle Scholar
  37. Prasad N. G. , Bedhomme S., Day T. and Chippindale A. K. 2007 An evolutionary cost of separate genders revealed by male-limited evolution. Am. Nat. 169, 29–37.PubMedCrossRefGoogle Scholar
  38. Quinn G. P. and Keough M. J. 2002 Experimental design and data analysis for biologists. Cambridge University Press, New York, USA.Google Scholar
  39. Rice W. R. 1996 Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232–234.PubMedCrossRefGoogle Scholar
  40. Rice W. R. 1998 Male fitness increases when females are eliminated from gene pool: Implications for the Y chromosome. Proc. Natl. Acad. Sci. USA 95, 6217–6221.PubMedCrossRefGoogle Scholar
  41. Rouault J., Capy P. and Jallon J. M. 2000 Variations of male cuticular hydrocarbons with geoclimatic variables: an adaptative mechanism in Drosophila melanogaster? Genetica 110, 117–130.PubMedCrossRefGoogle Scholar
  42. Rundle H. D. and Chenoweth S. F. 2011 Stronger convex (stabilizing) selection on homologous sexual display traits in females than in males: a multipopulation comparison in Drosophila serrata. Evolution 65, 893–899.PubMedCrossRefGoogle Scholar
  43. Rundle H. D., Chenoweth S. F., Doughty P. and Blows M. W. 2005 Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol. 3, e368.PubMedCrossRefGoogle Scholar
  44. Rybak F., Sureau G. and Aubin T. 2002 Functional coupling of acoustic and chemical signals in the courtship behaviour of the male Drosophila melanogaster. Proc. R. Soc. London, Ser. B 269, 695–701.CrossRefGoogle Scholar
  45. Savarit F. and Ferveur J. F. 2002 Genetic study of the production of sexually dimorphic cuticular hydrocarbons in relation with the sex-determination gene transformer in Drosophila melanogaster. Genet. Res. 79, 23–40.PubMedCrossRefGoogle Scholar
  46. Shirangi T. R., Dufour H. D., Williams T. M. and Carroll S. B. 2009 Rapid evolution of sex pheromone-producing enzyme expression in drosophila. PLoS Biol. 8, e1000168.CrossRefGoogle Scholar
  47. Svensson E. I., McAdam A. G. and Sinervo B. 2009 Intralocus sexual conflict over immune defense, gender load, and sex-specific signaling in a natural lizard population. Evolution 63, 3124–3135.PubMedCrossRefGoogle Scholar
  48. Toolson E. C. and Kupersimbron R. 1989 Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura - effects on sexual dimorphism and thermal acclimation ability. Evolution 43, 468–473.CrossRefGoogle Scholar
  49. Van Homrigh A., Higgie M., McGuigan K. and Blows M. W. 2007 The depletion of genetic variance by sexual selection. Curr. Biol. 17, 528–532.PubMedCrossRefGoogle Scholar
  50. Wicker-Thomas C. and Jallon J. M. 2000 Role of Enhancer of zeste on the production of Drosophila melanogaster pheromonal hydrocarbons. Naturwissenschaften 87, 76–79.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

    • 1
    • 1
  • N. G. PRASAD
    • 1
    • 2
    • 1
    • 1
    • 2
  1. 1.Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.Department of Biology and Centre for Advanced Research in Environmental GenomicsUniversity of OttawaOttawaCanada

Personalised recommendations