Journal of Genetics

, Volume 89, Issue 1, pp 109–116 | Cite as

Host genetic factors in susceptibility to HIV-1 infection and progression to AIDS

Review Article


HIV-1 infection has rapidly spread worldwide and has become the leading cause of mortality in infectious diseases. The duration for development of AIDS (AIDS progression) is highly variable among HIV-1 infected individuals, ranging from 2–3 years to no signs of AIDS development in the entire lifetime. Several factors regulate the rate at which HIV-1 infection progresses to AIDS. Host genetic factors play an important role in the outcome of such complex or multifactor diseases as AIDS and are also known to regulate the rate of disease progression. This review focuses on the major host genes reported to affect the progression to AIDS in HIV-1 infected individuals.


HIV AIDS progression genetics polymorphism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M. and Berger E. A. 1996 CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.PubMedCrossRefGoogle Scholar
  2. An P., Nelson G. W., Wang L., Donfield S., Goedert J. J., Phair J. et al. 2002 Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc. Natl. Acad. Sci. USA 99, 10002–10007.PubMedCrossRefGoogle Scholar
  3. An P., Bleiber G., Duggal P., Nelson G., May M., Mangeat B. et al. 2004 APOBEC3G genetic variants and their influence on the progression to AIDS. J. Virol. 78, 11070–11076.PubMedCrossRefGoogle Scholar
  4. Arenzana-Seisdedos F., Virelizier J. L., Rousset D., Clark-Lewis I., Loetscher P., Moser B. and Baggiolini M. 1996 HIV blocked by chemokine antagonist. Nature 383, 400.PubMedCrossRefGoogle Scholar
  5. Biron C. A. and Brossay L. 2001 NK cells and NKT cells in innate defense against viral infections. Curr. Opin. Immunol. 13, 458–464.PubMedCrossRefGoogle Scholar
  6. Bleiber G., May M., Martinez R., Meylan P., Ott J., Beckmann J. S. and Telenti A. 2005 Use of a combined ex vivo/in vivo population approach for screening of human genes involved in the human immunodeficiency virus type 1 life cycle for variants in-fluencing disease progression. J. Virol. 79, 12674–12680.PubMedCrossRefGoogle Scholar
  7. Bleul C. C., Farzan M., Choe H., Parolin C., Clark-Lewis I., Sodroski J. and Springer T. A. 1996 The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 382, 829–833.PubMedCrossRefGoogle Scholar
  8. Bleul C. C., Wu L., Hoxie J. A., Springer T. A. and Mackay C. R. 1997 The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 1925–1930.PubMedCrossRefGoogle Scholar
  9. Bochud P. Y., Hersberger M., Taffe P., Bochud M., Stein C. M., Rodrigues S. D. et al. 2007 Polymorphisms in toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS 21, 441–446.PubMedCrossRefGoogle Scholar
  10. Brennan F. M. and Feldmann M. 1996 Cytokines in autoimmunity. Curr. Opin. Immunol. 8, 872–877.PubMedCrossRefGoogle Scholar
  11. Brinkman B. M., Keet I. P., Miedema F., Verweij C. L. and Klein M. R. 1997 Polymorphisms within the human tumor necrosis factoralpha promoter region in human immunodeficiency virus type 1-seropositive persons. J. Infect. Dis. 175, 188–190.PubMedGoogle Scholar
  12. Carrington M. and O’Brien S. J. 2003 The influence of HLA genotype on AIDS. Annu. Rev. Med. 54, 535–551.PubMedCrossRefGoogle Scholar
  13. Carrington M., Nelson G. W., Martin M. P., Kissner T., Vlahov D., Goedert J. J. et al. 1999 HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752.PubMedCrossRefGoogle Scholar
  14. Carrington M., Nelson G. and O’Brien S. J. 2001 Considering genetic profiles in functional studies of immune responsiveness to HIV-1. Immunol. Lett. 79, 131–140.PubMedCrossRefGoogle Scholar
  15. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D. et al. 1996 The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.PubMedCrossRefGoogle Scholar
  16. Cohen O. J., Paolucci S., Bende S. M., Daucher M., Moriuchi H., Moriuchi M. et al. 1998 CXCR4 and CCR5 genetic polymorphisms in long-term nonprogressive human immunodeficiency virus infection: lack of association with mutations other than CCR5-Delta32. J. Virol. 72, 6215–6217.PubMedGoogle Scholar
  17. Combadiere C., Salzwedel K., Smith E. D., Tiffany H. L., Berger E. A. and Murphy P. M. 1998 Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J. Biol. Chem. 273, 23799–23804.PubMedCrossRefGoogle Scholar
  18. Crawley E., Kay R., Sillibourne J., Patel P., Hutchinson I. and Woo P. 1999 Polymorphic haplotypes of the interleukin-10 5′ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes of juvenile rheumatoid arthritis. Arthritis Rheum. 42, 1101–1108.PubMedCrossRefGoogle Scholar
  19. D’Alfonso S. and Richiardi P. M. 1994 A polymorphic variation in a putative regulation box of the TNFA promoter region. Immunogenetics 39, 150–154.PubMedGoogle Scholar
  20. D’Andrea A., Chang C., Franz-Bacon K., McClanahan T., Phillips J. H. and Lanier L. L. 1995 Molecular cloning of NKB1. A natural killer cell receptor for HLA-B allotypes. J. Immunol. 155, 2306–2310.PubMedGoogle Scholar
  21. Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R. et al. 1996 Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter AIDS cohort study, Multicenter hemophilia cohort study, San Francisco city cohort, ALIVE Study. Science 273, 1856–1862.PubMedCrossRefGoogle Scholar
  22. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M. et al. 1996 Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.PubMedCrossRefGoogle Scholar
  23. Diop G., Hirtzig T., Do H., Coulonges C., Vasilescu A., Labib T. et al. 2006 Exhaustive genotyping of the interferon alpha receptor 1 (IFNAR1) gene and association of an IFNAR1 protein variant with AIDS progression or susceptibility to HIV-1 infection in a French AIDS cohort. Biomed. Pharmacother. 60, 569–577.PubMedCrossRefGoogle Scholar
  24. Doherty P. C. and Zinkernagel R. M. 1975 Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256, 50–52.PubMedCrossRefGoogle Scholar
  25. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C. et al. 1996 A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158.PubMedCrossRefGoogle Scholar
  26. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A. et al. 1996 HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.PubMedCrossRefGoogle Scholar
  27. Faure S., Meyer L., Costagliola D., Vaneensberghe C., Genin E., Autran B. et al. 2000 Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science 287, 2274–2277.PubMedCrossRefGoogle Scholar
  28. Fellay J., Shianna K. V., Ge D., Colombo S., Ledergerber B., Weale M. et al. 2007 A whole-genome association study of major determinants for host control of HIV-1. Science 317, 944–947.PubMedCrossRefGoogle Scholar
  29. Feng Y., Broder C. C., Kennedy P. E. and Berger E. A. 1996 HIV-1 entry cofactor: functional cDNA cloning of a seventransmembrane, G protein-coupled receptor. Science 272, 872–877.PubMedCrossRefGoogle Scholar
  30. Fiorentino D. F., Zlotnik A., Mosmann T. R., Howard M. and O’Garra A. 1991 IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822.PubMedGoogle Scholar
  31. Flores-Villanueva P. O., Yunis E. J., Delgado J. C., Vittinghoff E., Buchbinder S., Leung J. Y. et al. 2001 Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc. Natl. Acad. Sci. USA 98, 5140–5145.PubMedCrossRefGoogle Scholar
  32. Forthal D. N., Landucci G., Bream J., Jacobson L. P., Phan T. B. and Montoya B. 2007 FcgammaRIIa genotype predicts progression of HIV infection. J. Immunol. 179, 7916–7923.PubMedGoogle Scholar
  33. Gao X., Nelson G. W., Karacki P., Martin M. P., Phair J., Kaslow R. et al. 2001 Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668–1675.PubMedCrossRefGoogle Scholar
  34. Gao X., Bashirova A., Iversen A. K., Phair J., Goedert J. J., Buchbinder S. et al. 2005 AIDS restriction HLA allotypes target distinct intervals of HIV-1 pathogenesis. Nat. Med 11, 1290–1292.PubMedCrossRefGoogle Scholar
  35. Garred P., Madsen H. O., Balslev U., Hofmann B., Pedersen C., Gerstoft J. and Svejgaard A. 1997 Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet 349, 236–240.PubMedCrossRefGoogle Scholar
  36. Goulder P. J., Bunce M., Krausa P., McIntyre K., Crowley S., Morgan B. et al. 1996 Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res. Hum. Retroviruses 12, 1691–1698.PubMedCrossRefGoogle Scholar
  37. Goulder P. J., Phillips R. E., Colbert R. A., McAdam S., Ogg G., Nowak M. A. et al. 1997 Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217.PubMedCrossRefGoogle Scholar
  38. Hamann A., Mantzoros C., Vidal-Puig A. and Flier J. S. 1995 Genetic variability in the TNF-alpha promoter is not associated with type II diabetes mellitus (NIDDM). Biochem. Biophys. Res. Commun. 211, 833–839.PubMedCrossRefGoogle Scholar
  39. Han X., Becker K., Degen H. J., Jablonowski H. and Strohmeyer G. 1996 Synergistic stimulatory effects of tumour necrosis factor alpha and interferon gamma on replication of human immunodeficiency virus type 1 and on apoptosis of HIV-1-infected host cells. Eur. J. Clin. Invest. 26, 286–292.PubMedCrossRefGoogle Scholar
  40. Harris R. S., Bishop K. N., Sheehy A. M., Craig H. M., Petersen-Mahrt S. K., Watt I. N. et al. 2003 DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809.PubMedCrossRefGoogle Scholar
  41. He J., Chen Y., Farzan M., Choe H., Ohagen A., Gartner S. et al. 1997 CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649.PubMedCrossRefGoogle Scholar
  42. Jarmuz A., Chester A., Bayliss J., Gisbourne J., Dunham I., Scott J. and Navaratnam N. 2002 An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296.PubMedCrossRefGoogle Scholar
  43. Just J. J. 1995 Genetic predisposition to HIV-1 infection and acquired immune deficiency virus syndrome: a review of the literature examining associations with HLA [corrected]. Hum. Immunol. 44, 156–169.PubMedCrossRefGoogle Scholar
  44. Kaur G. and Mehra N. 2009 Genetic determinants of HIV-1 infection and progression to AIDS: susceptibility to HIV infection. Tissue Antigens 73, 289–301.PubMedCrossRefGoogle Scholar
  45. Khoo S. H., Pepper L., Snowden N., Hajeer A. H., Vallely P., Wilkins E. G. et al. 1997 Tumour necrosis factor c2 microsatellite allele is associated with the rate of HIV disease progression. AIDS 11, 423–428.PubMedCrossRefGoogle Scholar
  46. Kim S. H., Cohen B., Novick D. and Rubinstein M. 1997 Mammalian type I interferon receptors consists of two subunits: IFNaR1 and IFNaR2. Gene 196, 279–286.PubMedCrossRefGoogle Scholar
  47. Knuchel M. C., Spira T. J., Neumann A. U., Xiao L., Rudolph D. L., Phair J. et al. 1998 Analysis of a biallelic polymorphism in the tumor necrosis factor alpha promoter and HIV type 1 disease progression. AIDS Res. Hum. Retroviruses 14, 305–309.PubMedCrossRefGoogle Scholar
  48. Kollmann T. R., Pettoello-Mantovani M., Katopodis N. F., Hachamovitch M., Rubinstein A., Kim A. and Goldstein H. 1996 Inhibition of acute in vivo human immunodeficiency virus infection by human interleukin 10 treatment of SCID mice implanted with human fetal thymus and liver. Proc. Natl. Acad. Sci. USA 93, 3126–3131.PubMedCrossRefGoogle Scholar
  49. Kostrikis L. G., Huang Y., Moore J. P., Wolinsky S. M., Zhang L., Guo Y. et al. 1998 A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat. Med. 4, 350–353.PubMedCrossRefGoogle Scholar
  50. Kumar V., Prakash O., Manpreet S., Sumedh G. and Medhi B. 2006 Genetic basis of HIV-1 resistance and susceptibility: an approach to understand correlation between human genes and HIV-1 infection. Indian J. Exp. Biol. 44, 683–692.PubMedGoogle Scholar
  51. Lecossier D., Bouchonnet F., Clavel F. and Hance A. J. 2003 Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112.PubMedCrossRefGoogle Scholar
  52. Libert F., Cochaux P., Beckman G., Samson M., Aksenova M., Cao A. et al. 1998 The deltaccr5 mutation conferring protection against HIV-1 in Caucasian populations has a single and recent origin in Northeastern Europe. Hum. Mol. Genet. 7, 399–406.PubMedCrossRefGoogle Scholar
  53. Lipscombe R. J., Sumiya M., Hill A. V., Lau Y. L., Levinsky R. J., Summerfield J. A. and Turner M. W. 1992 High frequencies in African and non-African populations of independent mutations in the mannose binding protein gene. Hum. Mol. Genet. 1, 709–715.PubMedCrossRefGoogle Scholar
  54. Liu R., Paxton W. A., Choe S., Ceradini D., Martin S. R., Horuk R. et al. 1996 Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.PubMedCrossRefGoogle Scholar
  55. Liu H., Chao D., Nakayama E. E., Taguchi H., Goto M., Xin X. et al. 1999 Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc. Natl. Acad. Sci. USA 96, 4581–4585.PubMedCrossRefGoogle Scholar
  56. Maas J., de Roda Husman A. M., Brouwer M., Krol A., Coutinho R., Keet I. et al. 1998 Presence of the variant mannose-binding lectin alleles associated with slower progression to AIDS. Amsterdam Cohort Study. AIDS 12, 2275–2280.PubMedCrossRefGoogle Scholar
  57. MacGinnitie A. J., Anant S. and Davidson N. O. 1995 Mutagenesis of apobec-1, the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme, reveals distinct domains that mediate cytosine nucleoside deaminase, RNA binding, and RNA editing activity. J. Biol. Chem. 270, 14768–14775.PubMedCrossRefGoogle Scholar
  58. Madsen H. O., Garred P., Kurtzhals J. A., Lamm L. U., Ryder L. P., Thiel S. and Svejgaard A. 1994 A new frequent allele is the missing link in the structural polymorphism of the human mannanbinding protein. Immunogenetics 40, 37–44.PubMedCrossRefGoogle Scholar
  59. Mangeat B., Turelli P., Caron G., Friedli M., Perrin L. and Trono D. 2003 Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103.PubMedCrossRefGoogle Scholar
  60. Martin M. P., Dean M., Smith M. W., Winkler C., Gerrard B., Michael N. L. et al. 1998 Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 282, 1907–1911.PubMedCrossRefGoogle Scholar
  61. Martin M. P., Gao X., Lee J. H., Nelson G.W., Detels R., Goedert J. J. et al. 2002 Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 31, 429–434.PubMedGoogle Scholar
  62. Martin M. P., Qi Y., Gao X., Yamada E., Martin J. N., Pereyra F. et al. 2007 Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39, 733–740.PubMedCrossRefGoogle Scholar
  63. Martinson J. J., Chapman N. H., Rees D. C., Liu Y. T. and Clegg J. B. 1997 Global distribution of the CCR5 gene 32-basepair deletion. Nat. Genet. 16, 100–103.PubMedCrossRefGoogle Scholar
  64. McDermott D. H., Zimmerman P. A., Guignard F., Kleeberger C. A., Leitman S. F. and Murphy P. M. 1998 CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 352, 866–870.PubMedCrossRefGoogle Scholar
  65. McDermott D. H., Beecroft M. J., Kleeberger C. A., Al-Sharif F. M., Ollier W. E., Zimmerman P. A. et al. 2000 Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 14, 2671–2678.PubMedCrossRefGoogle Scholar
  66. Michael N. L. 1999 Host genetic influences on HIV-1 pathogenesis. Curr. Opin. Immunol. 11, 466–474.PubMedCrossRefGoogle Scholar
  67. Michael N. L., Louie L. G., Rohrbaugh A. L., Schultz K. A., Dayhoff D. E., Wang C. E. and Sheppard H. W. 1997 The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat. Med. 3, 1160–1162.PubMedCrossRefGoogle Scholar
  68. Migueles S. A., Sabbaghian M. S., Shupert W. L., Bettinotti M. P., Marincola F. M., Martino L. et al. 2000 HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl. Acad. Sci. USA 97, 2709–2714.PubMedCrossRefGoogle Scholar
  69. Naif H. M., Li S., Ho-Shon M., Mathijs J. M., Williamson P. and Cunningham A. L. 1997 The state of maturation of monocytes into macrophages determines the effects of IL-4 and IL-13 on HIV replication. J. Immunol. 158, 501–511.PubMedGoogle Scholar
  70. O’Connor D. H., Allen T. M., Vogel T. U., Jing P., DeSouza I. P., Dodds E. et al. 2002 Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat. Med. 8, 493–499.PubMedCrossRefGoogle Scholar
  71. Pastinen T., Liitsola K., Niini P., Salminen M. and Syvanen A. C. 1998 Contribution of the CCR5 and MBL genes to susceptibility to HIV type 1 infection in the Finnish population. AIDS Res. Hum. Retroviruses 14, 695–698.PubMedCrossRefGoogle Scholar
  72. Paxton W. A., Martin S. R., Tse D., O’Brien T. R., Skurnick J., Van-Devanter N. L. et al. 1996 Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat. Med. 2, 412–417.PubMedCrossRefGoogle Scholar
  73. Phillips R. E., Rowland-Jones S., Nixon D. F., Gotch F. M., Edwards J. P., Ogunlesi A. O. et al. 1991 Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459.PubMedCrossRefGoogle Scholar
  74. Potts W. K. and Slev P. R. 1995 Pathogen-based models favoring MHC genetic diversity. Immunol. Rev. 143, 181–197.PubMedCrossRefGoogle Scholar
  75. Qi Y., Martin M. P., Gao X., Jacobson L., Goedert J. J., Buchbinder S. et al. 2006 KIR/HLA pleiotropism: protection against both HIV and opportunistic infections. PLoS Pathog. 2, e79.PubMedCrossRefGoogle Scholar
  76. Quillent C., Oberlin E., Braun J., Rousset D., Gonzalez-Canali G., Metais P. et al. 1998 HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet 351, 14–18.PubMedCrossRefGoogle Scholar
  77. Ravetch J. V. and Bolland S. 2001 IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290.PubMedCrossRefGoogle Scholar
  78. Reeves J. D., McKnight A., Potempa S., Simmons G., Gray P. W., Power C. A. et al. 1997 CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 231, 130–134.PubMedCrossRefGoogle Scholar
  79. Risma K. A., Wang N., Andrews R. P., Cunningham C. M., Ericksen M. B., Bernstein J. A. et al. 2002 V75R576 IL-4 receptor alpha is associated with allergic asthma and enhanced IL-4 receptor function. J. Immunol. 169, 1604–1610.PubMedGoogle Scholar
  80. Rosenwasser L. J. and Borish L. 1997 Genetics of atopy and asthma: the rationale behind promoter-based candidate gene studies (IL-4 and IL-10). Am. J. Respir. Crit. Care Med. 156, S152–S155.PubMedGoogle Scholar
  81. Rucker J., Edinger A. L., Sharron M., Samson M., Lee B., Berson J. F. et al. 1997 Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 71, 8999–9007.PubMedGoogle Scholar
  82. Samson M., Libert F., Doranz B. J., Rucker J., Liesnard C., Farber C.M. et al. 1996 Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725.PubMedCrossRefGoogle Scholar
  83. Schols D. and De C. E. 1996 Human immunodeficiency virus type 1 gp120 induces anergy in human peripheral blood lymphocytes by inducing interleukin-10 production. J. Virol. 70, 4953–4960.PubMedGoogle Scholar
  84. Sen G. C. 2001 Viruses and interferons. Annu. Rev. Microbiol. 55, 255–281.PubMedCrossRefGoogle Scholar
  85. Shiga H., Shioda T., Tomiyama H., Takamiya Y., Oka S., Kimura S. et al. 1996 Identification of multiple HIV-1 cytotoxic T-cell epitopes presented by human leukocyte antigen B35 molecules. AIDS 10, 1075–1083.PubMedGoogle Scholar
  86. Smith M. W., Dean M., Carrington M., Winkler C., Huttley G. A., Lomb D. A. et al. 1997 Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia growth and development study (HGDS), multicenter AIDS cohort study (MACS), multicenter hemophilia cohort study (MHCS), San Francisco city cohort (SFCC), ALIVE study. Science 277, 959–965.PubMedCrossRefGoogle Scholar
  87. Soriano A., Lozano F., Oliva H., Garcia F., Nomdedeu M., De Lazzari E. et al. 2005 Polymorphisms in the interleukin-4 receptor alpha chain gene influence susceptibility to HIV-1 infection and its progression to AIDS. Immunogenetics 57, 644–654.PubMedCrossRefGoogle Scholar
  88. Stephens J. C., Reich D. E., Goldstein D. B., Shin H. D., Smith M. W., Carrington M. et al. 1998 Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515.PubMedCrossRefGoogle Scholar
  89. Takai T. 2002 Roles of Fc receptors in autoimmunity. Nat. Rev. Immunol. 2, 580–592.PubMedGoogle Scholar
  90. Tang J., Costello C., Keet I. P., Rivers C., Leblanc S., Karita E. et al. 1999 HLA class I homozygosity accelerates disease progression in human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 15, 317–324.PubMedCrossRefGoogle Scholar
  91. Tomiyama H., Miwa K., Shiga H., Moore Y. I., Oka S., Iwamoto A. et al. 1997 Evidence of presentation of multiple HIV-1 cytotoxic T lymphocyte epitopes by HLA-B*3501 molecules that are associated with the accelerated progression of AIDS. J. Immunol. 158, 5026–5034.PubMedGoogle Scholar
  92. Turner M. W. 1996 Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol. Today 17, 532–540.Google Scholar
  93. van der Pol W. L., Jansen M.D., Sluiter W. J., van de S. B., Leppersvan de Straat F. G., Kobayashi T. et al. 2003 Evidence for nonrandom distribution of Fcgamma receptor genotype combinations. Immunogenetics 55, 240–246.PubMedCrossRefGoogle Scholar
  94. van Rij R. P. Portegies P., Hallaby T., Lange J. M., Visser J., de Roda Husman A. M. et al. 1999 Reduced prevalence of the CCR5 delta32 heterozygous genotype in human immunodeficiency virus-infected individuals with AIDS dementia complex. J. Infect. Dis. 180, 854–857.PubMedCrossRefGoogle Scholar
  95. Vassalli P. 1992 The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10, 411–452.PubMedCrossRefGoogle Scholar
  96. Warmerdam P. A., van de Winkel J. G., Vlug A., Westerdaal N. A. and Capel P. J. 1991 A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J. Immunol. 147, 1338–1343.PubMedGoogle Scholar
  97. Wilson A. G., de V. N., Pociot F., di Giovine F. S., van der Putte L. B. and Duff G. W. 1993 An allelic polymorphism within the human tumor necrosis factor alpha promoter region is strongly associated with HLA A1, B8, and DR3 alleles. J. Exp. Med. 177, 557–560.PubMedCrossRefGoogle Scholar
  98. Winkler C., Modi W., Smith M. W., Nelson G. W., Wu X., Carrington M. et al. 1998 Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, hemophilia growth and development study (HGDS), multicenter AIDS cohort study (MACS), multicenter hemophilia cohort study (MHCS), San Francisco city cohort (SFCC). Science 279, 389–393.PubMedCrossRefGoogle Scholar
  99. Wu L., Gerard N. P., Wyatt R., Choe H., Parolin C., Ruffing N. et al. 1996 CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183.PubMedCrossRefGoogle Scholar
  100. Wu L., LaRosa G., Kassam N., Gordon C. J., Heath H., Ruffing N. et al. 1997a Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. J. Exp. Med. 186, 1373–1381.PubMedCrossRefGoogle Scholar
  101. Wu L., Paxton W. A., Kassam N., Ruffing N., Rottman J. B., Sullivan N. et al. 1997b CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J. Exp. Med. 185, 1681–1691.PubMedCrossRefGoogle Scholar
  102. Zimmerman P. A., Buckler-White A., Alkhatib G., Spalding T., Kubofcik J., Combadiere C. et al. 1997 Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol. Med. 3, 23–36.PubMedGoogle Scholar
  103. Zinkernagel R. M. 1996 Immunology taught by viruses. Science 271, 173–178.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  1. 1.Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownRepublic of South Africa

Personalised recommendations