Journal of Genetics

, Volume 88, Issue 4, pp 409–415 | Cite as

Channelrhodopsins provide a breakthrough insight into strategies for curing blindness

  • Hiroshi Tomita
  • Eriko Sugano
  • Hitomi Isago
  • Makoto Tamai
Review Article


Photoreceptor cells are the only retinal neurons that can absorb photons. Their degeneration due to some diseases or injuries leads to blindness. Retinal prostheses electrically stimulating surviving retinal cells and evoking a pseudo light sensation have been investigated over the past decade for restoring vision. Currently, a gene therapy approach is under development. Channelrhodopsin-2 derived from the green alga Chlamydomonas reinhardtii, is a microbial-type rhodopsin. Its specific characteristic is that it functions as a light-driven cation-selective channel. It has been reported that the channelrhodopsin-2 transforms inner light-insensitive retinal neurons to light-sensitive neurons. Herein, we introduce new strategies for restoring vision by using channelrhodopsins and discuss the properties of adeno-associated virus vectors widely used in gene therapy.


channelrhodopsin-2 retinitis pigmentosa adeno-associated virus vector blindness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe T., Tomita H., Ohashi T., Yamada K., Takeda Y., Akaishi K. et al. 1999 Characterization of iris pigment epithelial cell for auto cell transplantation. Cell Transplant. 8, 501–510.PubMedGoogle Scholar
  2. Ali R. R., Reichel M. B., Thrasher A. J., Levinsky R. J., Kinnon C., Kanuga N. et al. 1996 Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum. Mol. Genet. 5, 591–594.CrossRefPubMedGoogle Scholar
  3. Ali R. R., Reichel M. B., De Alwis M., Kanuga N., Kinnon C. and Levinsky R. J. 1998 Adeno-associated virus gene transfer to mouse retina. Hum. Gene Ther. 9, 81–86.CrossRefPubMedGoogle Scholar
  4. Allocca M., Mussolino C., Garcia-Hoyos M., Sanges D., Iodice C., Petrillo M. et al. 2007 Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J. Virol. 81, 11372–11380.CrossRefPubMedGoogle Scholar
  5. Aramant R. B. and Seiler M. J. 2002 Retinal transplantation — advantages of intact fetal sheets. Prog. Retina Eye Res. 21, 57–73.CrossRefGoogle Scholar
  6. Auricchio A. 2003 Pseudotyped AAV vectors for constitutive and regulated gene expression in the eye. Vision Res. 43, 913–918.CrossRefPubMedGoogle Scholar
  7. Auricchio A., Kobinger G., Anand V., Hildinger M., O’Connor E., Maguire A. M. et al. 2001 Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum. Mol. Genet. 110, 3075–3081.CrossRefGoogle Scholar
  8. Bainbridge J. W. and Ali R. R. 2008 Success in sight: The eyes have it! Ocular gene therapy trials for LCA look promising. Gene Ther. 15, 1191–1192.CrossRefPubMedGoogle Scholar
  9. Bainbridge J. W., Smith A. J., Barker S. S., Robbie S., Henderson R., Balaggan K. et al. 2008 Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2231–2239.CrossRefPubMedGoogle Scholar
  10. Bi A., Cui J., Ma Y. P., Olshevskaya E., Pu M., Dizhoor A. M. and Pan Z. H. 2006 Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33.CrossRefPubMedGoogle Scholar
  11. Boyden E. S., Zhang F., Bamberg E., Nagel G. and Deisseroth K. 2005 Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268.CrossRefPubMedGoogle Scholar
  12. Chow A. Y. and Peachey N. S. 1998 The subretinal microphotodiode array retinal prosthesis. Ophthalmic Res. 30, 195–198.CrossRefPubMedGoogle Scholar
  13. Chow A. Y. and Peachey N. 1999 The subretinal microphotodiode array retinal prosthesis II. Ophthalmic Res. 31, 246.CrossRefPubMedGoogle Scholar
  14. Cideciyan A. V., Aleman T. S., Boye S. L., Schwartz S. B., Kaushal S., Roman A. J. et al. 2008 Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc. Natl. Acad. Sci. USA 105, 15112–15117.CrossRefPubMedGoogle Scholar
  15. Evanko D. 2007 Optical excitation yin and yang. Nat. Methods 4, 384.CrossRefPubMedGoogle Scholar
  16. Flannery J. G., Zolotukhin S., Vaquero M. I., LaVail M. M., Muzyczka N. and Hauswirth W. W. 1997 Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc. Natl. Acad. Sci. USA 94, 6916–6921.CrossRefPubMedGoogle Scholar
  17. Gouras P. and Lopez R. 1989 Transplantation of retinal epithelial cells. Invest. Ophthalmol. Vis. Sci. 30, 1681–1683.PubMedGoogle Scholar
  18. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J.M. and Henderson R. 1996 Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.CrossRefPubMedGoogle Scholar
  19. Guy J., Qi X. and Hauswirth W. W. 1998 Adeno-associated viral-mediated catalase expression suppresses optic neuritis in experimental allergic encephalomyelitis. Proc. Natl. Acad. Sci. USA 95, 13847–13852.CrossRefPubMedGoogle Scholar
  20. Han X. and Boyden E. S. 2007 Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2, e299.CrossRefPubMedGoogle Scholar
  21. Hartong D. T., Berson E. L. and Dryja T. P. 2006 Retinitis pigmentosa. Lancet 368, 1795–1809.CrossRefPubMedGoogle Scholar
  22. Haruta M., Sasai Y., Kawasaki H., Amemiya K., Ooto S., Kitada M. et al. 2004 In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci. 45, 1020–1025.CrossRefPubMedGoogle Scholar
  23. Hauswirth W. W., Aleman T. S., Kaushal S., Cideciyan A. V., Schwartz S. B., Wang L. et al. 2008 Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum. Gene Ther. 19, 979–990.CrossRefPubMedGoogle Scholar
  24. Hayes J. S., Yin V. T., Piyathaisere D., Weiland J. D., Humayun M. S. and Dagnelie G. 2003 Visually guided performance of simple tasks using simulated prosthetic vision. Artif. Organs 27, 1016–1028.CrossRefPubMedGoogle Scholar
  25. Humayun M. S. 2001 Intraocular retinal prosthesis. Trans. Am. Ophthalmol. Soc. 99, 271–300.PubMedGoogle Scholar
  26. Humayun M. S., Prince M., de Juan Jr E., Barron Y., Moskowitz M., Klock I. B. and Milam A. H. 1999 Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 40, 143–148.PubMedGoogle Scholar
  27. Humayun M. S., de Juan Jr E., del Cerro M., Dagnelie G., Radner W., Sadda S. R. and del Cerro C. 2000 Human neural retinal transplantation. Invest. Ophthalmol. Vis. Sci. 41, 3100–3106.PubMedGoogle Scholar
  28. Humayun M. S., Weiland J. D., Fujii G. Y., Greenberg R., Williamson R., Little J. et al. 2003 Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res. 43, 2573–2581.CrossRefPubMedGoogle Scholar
  29. Ishizuka T., Kakuda M., Araki R. and Yawo H. 2006 Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94.CrossRefPubMedGoogle Scholar
  30. Javaheri M., Hahn D. S., Lakhanpal R. R., Weiland J. D. and Humayun M. S. 2006 Retinal prostheses for the blind. Ann. Acad. Med. Singapore 35, 137–144.PubMedGoogle Scholar
  31. Jomary C., Vincent K. A., Grist J., Neal M. J. and Jones S. E. 1997 Rescue of photoreceptor function by AAV-mediated gene transfer in a mouse model of inherited retinal degeneration. Gene Ther. 4, 683–690.CrossRefPubMedGoogle Scholar
  32. Kaplan H. J., Tezel T. H., Berger A. S. and Del Priore L. V. 1999 Retinal transplantation. Chem. Immunol. 73, 207–219.CrossRefPubMedGoogle Scholar
  33. Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuoka K. et al. 1997 Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389, 206–211.CrossRefPubMedGoogle Scholar
  34. Koenekoop R. K. 2004 An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv. Ophthalmol. 49, 379–398.CrossRefPubMedGoogle Scholar
  35. Koenekoop R. K. 2008 Successful RPE65 gene replacement and improved visual function in humans. Ophthalmic Genet. 29, 89–91.CrossRefPubMedGoogle Scholar
  36. Lagali P. S., Balya D., Awatramani G. B., Munch T. A., Kim D. S., Busskamp V. et al. 2008 Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11, 667–675.CrossRefPubMedGoogle Scholar
  37. Lamb T. D. and Pugh Jr E. N. 2004 Dark adaptation and the retinoid cycle of vision. Prog. Retina Eye Res. 23, 307–380.CrossRefGoogle Scholar
  38. Lanyi J. K. 1990 Halorhodopsin, a light-driven electrogenic chloride-transport system. Physiol. Rev. 70, 319–330.PubMedGoogle Scholar
  39. Lavail M. M., Li L., Turner J. E. and Yasumura D. 1992 Retinal pigment epithelial cell transplantation in RCS rats: normal metabolism in rescued photoreceptors. Exp. Eye Res. 55, 555–562.CrossRefPubMedGoogle Scholar
  40. Levick W. R. 1967 Receptive fields and trigger features of ganglion cells in the visual streak of the rabbits retina. J. Physiol. 188, 285–307.PubMedGoogle Scholar
  41. Lewin A. S., Drenser K. A., Hauswirth W. W., Nishikawa S., Yasumura D., Flannery J. G. and LaVail M.M. 1998 Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat. Med. 4, 967–971.CrossRefPubMedGoogle Scholar
  42. Lin J. Y., Lin M. Z., Steinbach P. and Tsien R. Y. 2009 Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J. 96, 1803–1814.CrossRefPubMedGoogle Scholar
  43. Lopez R., Gouras P., Kjeldbye H., Sullivan B., Reppucci V., Brittis M. et al. 1989 Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest. Ophthalmol. Vis. Sci. 30, 586–588.PubMedGoogle Scholar
  44. Lotery A. J., Derksen T. A., Russell S. R., Mullins R. F., Sauter S., Affatigato L. M. et al. 2002 Gene transfer to the nonhuman primate retina with recombinant feline immunodeficiency virus vectors. Hum. Gene Ther. 13, 689–696.CrossRefPubMedGoogle Scholar
  45. Lund R. D., Lawrence J. M., Villegas-Perez M. P., Litchfield T. M., Sauve Y., Whiteley S. J. and Coffey P. J. 1998 Retinal degeneration and transplantation in the royal college of surgeons rat. Eye 12, 597–604.PubMedGoogle Scholar
  46. Lund R. D., Ono S. J., Keegan D. J. and Lawrence J. M. 2003 Retinal transplantation: progress and problems in clinical application. J. Leukoc. Biol. 74, 151–160.CrossRefPubMedGoogle Scholar
  47. Maguire A. M., Simonelli F., Pierce E. A., Pugh Jr E. N., Mingozzi F., Bennicelli J. et al. 2008 Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 358, 2240–2248.CrossRefPubMedGoogle Scholar
  48. Majji A. B., Humayun M. S., Weiland J. D., Suzuki S., D’Anna S. A. and de Juan Jr E. 1999 Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. Invest. Ophthalmol. Vis. Sci. 40, 2073–2081.PubMedGoogle Scholar
  49. Marc R. E., Jones B. W., Watt C. B. and Strettoi E. 2003 Neural remodeling in retinal degeneration. Prog. Retina Eye Res. 22, 607–655.CrossRefGoogle Scholar
  50. Margalit E., Maia M., Weiland J. D., Greenberg R. J., Fujii G. Y., Torres G. et al. 2002 Retinal prosthesis for the blind. Surv. Ophthalmol. 47, 335–356.CrossRefPubMedGoogle Scholar
  51. Martin K. R., Klein R. L. and Quigley H. A. 2002 Gene delivery to the eye using adeno-associated viral vectors. Methods 28, 267–275.CrossRefPubMedGoogle Scholar
  52. Miyoshi H., Takahashi M., Gage F. H. and Verma I. M. 1997 Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc. Natl. Acad. Sci. USA 94, 10319–10323.CrossRefPubMedGoogle Scholar
  53. Nagel G., Szellas T., Huhn W., Kateriya S., Adeishvili N., Berthold P. et al. 2003 Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945.CrossRefPubMedGoogle Scholar
  54. Nakauchi K., Fujikado T., Kanda H., Kusaka S., Ozawa M., Sakaguchi H. et al. 2007 Threshold suprachoroidal-transretinal stimulation current resulting in retinal damage in rabbits. J. Neural Eng. 4, S50–S57.CrossRefPubMedGoogle Scholar
  55. Peyman G., Chow A. Y., Liang C., Chow V. Y., Perlman J. I., Peachey N. S. et al. 1998 Subretinal semiconductor microphotodiode array. Ophthalmic. Surg. Lasers 29, 234–241.PubMedGoogle Scholar
  56. Qi X., Hauswirth W. W. and Guy J. 2007 Dual gene therapy with extracellular superoxide dismutase and catalase attenuates experimental optic neuritis. Mol. Vis. 13, 1–11.CrossRefPubMedGoogle Scholar
  57. Reichel M. B., Bainbridge J., Baker D., Thrasher A. J., Bhattacharya S. S. and Ali R. R. 2001 An immune response after intraocular administration of an adenoviral vector containing a beta galactosidase reporter gene slows retinal degeneration in the rd mouse. Br. J. Ophthalmol. 85, 341–344.CrossRefPubMedGoogle Scholar
  58. Sakaguchi H., Fujikado T., Fang X., Kanda H., Osanai M., Nakauchi K. et al. 2004 Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn. J. Ophthalmol. 48, 256–261.CrossRefPubMedGoogle Scholar
  59. Sakamoto T., Kimura H., Scuric Z., Spee C., Gordon E. M., Hinton D. R. et al. 1995 Inhibition of experimental proliferative vitreoretinopathy by retroviral vector-mediated transfer of suicide gene. Can proliferative vitreoretinopathy be a target of gene therapy? Ophthalmology 102, 1417–1424.PubMedGoogle Scholar
  60. Santos A., Humayun M. S., de Juan Jr E., Greenburg R. J., Marsh M. J., Klock I. B. and Milam A. H. 1997 Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. Arch. Ophthalmol. 115, 511–515.PubMedGoogle Scholar
  61. Sarra G. M., Stephens C., Schlichtenbrede F. C., Bainbridge J. W., Thrasher A. J., Luthert P. J. and Ali R. R. 2002 Kinetics of transgene expression in mouse retina following sub-retinal injection of recombinant adeno-associated virus. Vision Res. 42, 541–549.CrossRefPubMedGoogle Scholar
  62. Schiller P. H. 1992 The ON and OFF channels of the visual system. Trends Neurosci. 15, 86–92.CrossRefPubMedGoogle Scholar
  63. Schraermeyer U., Thumann G., Luther T., Kociok N., Armhold S., Kruttwig K. et al. 2001 Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transplant. 10, 673–680.PubMedGoogle Scholar
  64. Seiler M. J. and Aramant R. B. 1998 Intact sheets of fetal retina transplanted to restore damaged rat retinas. Invest. Ophthalmol. Vis. Sci. 39, 2121–2131.PubMedGoogle Scholar
  65. Sheedlo H. J., Gaur V., Li L. X., Seaton A. D. and Turner J. E. 1991 Transplantation to the diseased and damaged retina. Trends Neurosci. 14, 347–350.CrossRefPubMedGoogle Scholar
  66. Sineshchekov O. A., Jung K. H. and Spudich J. L. 2002 Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 99, 8689–8694.PubMedGoogle Scholar
  67. Smith A. J., Bainbridge J. W. and Ali R. R. 2009 Prospects for retinal gene replacement therapy. Trends Genet. 25, 156–165.CrossRefPubMedGoogle Scholar
  68. Stone E. M. 2007 Leber congenital amaurosis — a model for efficient genetic testing of heterogeneous disorders: LXIV Edward Jackson Memorial Lecture. Am. J. Ophthalmol. 144, 791–811.CrossRefPubMedGoogle Scholar
  69. Strettoi E., Pignatelli V., Rossi C., Porciatti V. and Falsini B. 2003 Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res. 43, 867–877.CrossRefPubMedGoogle Scholar
  70. Subramaniam S. and Henderson R. 2000 Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653–657.CrossRefPubMedGoogle Scholar
  71. Sugiyama Y., Wang H., Hikima T., Sato M., Kuroda J., Takahashi T. et al. 2009 Photocurrent attenuation by a single polar-to-nonpolar point mutation of channelrhodopsin-2. Photochem. Photobiol. Sci. 8, 328–336.CrossRefPubMedGoogle Scholar
  72. Tomita H., Sugano E., Yawo H., Ishizuka T., Isago H., Narikawa S. et al. 2007 Restoration of visual response in aged dystrophic RCS rats using AAV-mediated channelopsin-2 gene transfer. Invest. Ophthalmol. Vis. Sci. 48, 3821–3826.CrossRefPubMedGoogle Scholar
  73. Tsuda M., Glaccum M., Nelson B. and Ebrey T. G. 1980 Light isomerizes the chromophore of bacteriorhodopsin. Nature 287, 351–353.CrossRefPubMedGoogle Scholar
  74. Tsunoda S. P. and Hegemann P. 2009 Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation. Photochem. Photobiol. 85, 564–569.CrossRefPubMedGoogle Scholar
  75. Wang H., Sugiyama Y., Hikima T., Sugano E., Tomita H., Takahashi T. et al. 2009 Molecular determinants differentiating photocurrent properties of two channelrhodopsins from Chlamydomonas. J. Biol. Chem. 284, 5685–5696.CrossRefPubMedGoogle Scholar
  76. Weber M., Rabinowitz J., Provost N., Conrath H., Folliot S., Briot D. et al. 2003 Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol. Ther. 7, 774–781.CrossRefPubMedGoogle Scholar
  77. Yang P., Seiler M. J., Aramant R. B. and Whittemore S. R. 2002 Differential lineage restriction of rat retinal progenitor cells in vitro and in vivo. J. Neurosci. Res. 69, 466–476.CrossRefPubMedGoogle Scholar
  78. Zhang F., Aravanis A. M., Adamantidis A., de Lecea L. and Deisseroth K. 2007a Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581.CrossRefPubMedGoogle Scholar
  79. Zhang F., Wang L. P., Brauner M., Liewald J. F., Kay K., Watzke N. et al. 2007b Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639.CrossRefPubMedGoogle Scholar
  80. Zhang F., Prigge M., Beyriere F., Tsunoda S. P., Mattis J., Yizhar O. et al. 2008 Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633.CrossRefPubMedGoogle Scholar
  81. Zrenner E. 2002 The subretinal implant: can microphotodiode arrays replace degenerated retinal photoreceptors to restore vision? Ophthalmologica 216suppl. 1, 8–20; discussion 52–53.CrossRefPubMedGoogle Scholar
  82. Zrenner E., Stett A., Weiss S., Aramant R. B., Guenther E., Kohler K. et al. 1999 Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res. 39, 2555–2567.CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  • Hiroshi Tomita
    • 1
  • Eriko Sugano
    • 1
  • Hitomi Isago
    • 2
  • Makoto Tamai
    • 2
  1. 1.Tohoku University Institute for International Advanced Interdisciplinary ResearchSendaiJapan
  2. 2.Tohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations