Journal of Genetics

, Volume 87, Issue 1, pp 39–51 | Cite as

Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.)

  • D. E. Jarvis
  • O. R. Kopp
  • E. N. Jellen
  • M. A. Mallory
  • J. Pattee
  • A. Bonifacio
  • C. E. Coleman
  • M. R. Stevens
  • D. J. Fairbanks
  • P. J. Maughan
Research Article

Abstract

Quinoa is a regionally important grain crop in the Andean region of South America. Recently quinoa has gained international attention for its high nutritional value and tolerances of extreme abiotic stresses. DNA markers and linkage maps are important tools for germplasm conservation and crop improvement programmes. Here we report the development of 216 new polymorphic SSR (simple sequence repeats) markers from libraries enriched for GA, CAA and AAT repeats, as well as 6 SSR markers developed from bacterial artificial chromosome-end sequences (BES-SSRs). Heterozygosity (H) values of the SSR markers ranges from 0.12 to 0.90, with an average value of 0.57. A linkage map was constructed for a newly developed recombinant inbred lines (RIL) population using these SSR markers. Additional markers, including amplified fragment length polymorphisms (AFLPs), two 11S seed storage protein loci, and the nucleolar organizing region (NOR), were also placed on the linkage map. The linkage map presented here is the first SSR-based map in quinoa and contains 275 markers, including 200 SSR. The map consists of 38 linkage groups (LGs) covering 913 cM. Segregation distortion was observed in the mapping population for several marker loci, indicating possible chromosomal regions associated with selection or gametophytic lethality. As this map is based primarily on simple and easily-transferable SSR markers, it will be particularly valuable for research in laboratories in Andean regions of South America.

Keywords

microsatellites heterozygosity genetic map NOR 11S 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson G. 1999 Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580.PubMedCrossRefGoogle Scholar
  2. Broman K. W. 2005 The genomes of recombinant inbred lines. Genetics 169, 1133–1146.PubMedCrossRefGoogle Scholar
  3. Christensen S. A., Pratt D. B., Pratt C., Stevens M. R., Jellen E. N., Coleman C. E. et al. 2007 Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant. Genet. Res. 5, 82–95.CrossRefGoogle Scholar
  4. Cureton A. N., Burns M. J., Ford-Lloyd B. V. and Newbury H. J. 2002 Development of simple sequence repeat (SSR) markers for the assessment of gene flow between sea beet (Beta vulgaris ssp. maritima) populations. Mol. Ecol. Notes 2, 402–403.CrossRefGoogle Scholar
  5. Danielsen S., Bonifacio A. and Ames T. 2003 Diseases of quinoa (Chenopodium quinoa). Food Rev. Int. 19, 43–59.CrossRefGoogle Scholar
  6. Diwan N., McIntosh M. S. and Bauchan G. R. 1995 Methods of developing a core collection of annual Medicago species. Theor. Appl. Genet. 90, 755–761.CrossRefGoogle Scholar
  7. Franco J. 2003 Parasitic nematodes of quinoa in the Andean region of Bolivia. Food Rev. Int. 19, 77–85.CrossRefGoogle Scholar
  8. Hall M. C. and Willis J. H. 2005 Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications for genomic divergence. Genetics 170, 375–386.PubMedCrossRefGoogle Scholar
  9. Jacobsen S.-E. 2003 The Worldwide potential for quinoa (Chenopodium quinoa Willd.) potential. Food Rev. Int. 19, 167–177.CrossRefGoogle Scholar
  10. Jacobsen S.-E., Mujica A. and Jensen C. R. 2003 The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 19, 99–109.CrossRefGoogle Scholar
  11. Konieczny A. and Ausubel F. M. 1993 A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403–410.PubMedCrossRefGoogle Scholar
  12. Lu H., Romero-Severson J. and Bernardo R. 2002 Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet. 105, 622–628.PubMedCrossRefGoogle Scholar
  13. Mason S. L., Stevens M. R., Jellen E. N., Bonifacio A., Fairbanks D. J., Coleman C. E. et al. 2005 Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci. 45, 1618–1630.CrossRefGoogle Scholar
  14. Maughan P. J., Bonifacio A., Jellen E. N., Stevens M. R., Coleman C. E., Ricks M. et al. 2004 A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor. Appl. Genet. 109, 1188–1195.PubMedCrossRefGoogle Scholar
  15. Maughan P. J., Kolano B., Maluszynska J., Coles N. D., Bonifacio A., Rojas Beltran J. et al. 2006 Molecular and cytological characterization of ribosomal DNAs in Chenopodium quinoa and Chenopodium berlandieri. Genome (in press).Google Scholar
  16. McCouch S. R., Teytelman L., Xu Y., Lobos K. B., Clare K., Walton M., Fu B. et al. 2002 Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 199–207.PubMedCrossRefGoogle Scholar
  17. Mozo T., Dewar K., Dunn P., Ecker J. R., Fischer S., Kloska S. et al. 1999 A complete BAC-based physical map of the Arabidopsis thaliana genome. Nature Genet. 22, 271–275.PubMedCrossRefGoogle Scholar
  18. Nei M. 1978 Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.PubMedGoogle Scholar
  19. Ooijen J. W. van and Voorrips R. E. 2001 JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, Netherlands.Google Scholar
  20. Ott J. 1992 Strategies for characterizing highly polymorphic markers in human gene mapping. Am. J. Hum. Genet. 51, 283–290.PubMedGoogle Scholar
  21. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E. and Tanksley S. D. 1988 Resolution of quantitative trait into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726.PubMedCrossRefGoogle Scholar
  22. Pearsall D. 1992 The origins of plant cultivation in South America. In The Origins of Agriculture An International Perspective (ed. C. W. Cowan and P. J. Watson), pp. 173–205. Smithsonian Institution Press, Washington.Google Scholar
  23. Prado R. E., Boero C., Gallard M. and Gonzalez J. A. 2000 Effect of NaCl on germination, growth, and soluble sugar content in Chenopodium quinoa Willd. seeds. Bot. Bull. Acad. Sci. 41, 27–34.Google Scholar
  24. Rae S. J., Aldam C., Dominguez I., Hoebrechts M., Barnes S. R. and Edwards K. J. 2000 Development and incorporation of microsatellite markers into the linkage map of sugar beet (Beta vulgaris spp.). Theor. Appl. Genet. 100, 1240–1248.CrossRefGoogle Scholar
  25. Rasmussen C., Lagnaoui A. and Esbjerg P. 2003 Advances in the knowledge of quinoa pests. Food Rev. Int. 19, 61–75.CrossRefGoogle Scholar
  26. Risi J. and Galwey N. W. 1984 The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv. Appl. Biol. 10, 145–216.Google Scholar
  27. Rozen S. and Skaletsky H. J. 2000 Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics methods and protocols: Methods in molecular biology (ed. S. Krawetz and S. Misener), pp. 365–386. Human Press, Totowa, NJ.Google Scholar
  28. Sambrook J., Fritsch E. E. and Maniatis T. 1989 Molecular cloning. A laboratory manual. 2nd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  29. Simmonds N. W. 1971 The breeding system of Chenopodium quinoa. I. Male sterility. Heredity 27, 73–82.CrossRefGoogle Scholar
  30. Stam P. 1993 Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J. 3, 739–744.CrossRefGoogle Scholar
  31. Staub J. E., Serquen F. C. and Gupta M. 1996 Genetic markers, map construction, and their application in plant breeding. HortScience 31, 729–741.Google Scholar
  32. Stevens M. R., Coleman C. E., Parkinson S. E., Maughan P. J., Zhang H. B., Balzotti M. R. et al. 2006 Construction of a quinoa (Chenopodium quinoa Willd.) BAC library and its use in identifying genes encoding seed storage proteins. Theor. Appl. Genet. 112, 1593–1600.PubMedCrossRefGoogle Scholar
  33. Tanksley S. D. and McCouch S. R. 1997 Seed bands and molecular maps: Unlocking genetic potential from the wild. Science 277, 1063–1066.PubMedCrossRefGoogle Scholar
  34. Tapia M., Gandarillas H., Alandia S., Cardozo A., Mujica R., Ortiz R. et al. 1979 Quinua y kañiwa: Cultivos andinos. CIID-IICA. Bogotá, Colombia.Google Scholar
  35. Todd J. J. and Vodkin L. O. 1996 Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8, 687–699.PubMedCrossRefGoogle Scholar
  36. Vacher J. J. 1998 Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd.) and papa amarga (Solanum juzepezukii Buk.) to drought on the Bolivian Altiplano: Significance of local adaptation. Agric. Ecosyst. Environ. 68, 99–108.CrossRefGoogle Scholar
  37. Vos P., Hogers R., Bleeker M., Reijans M., Van de Lee T., Hornes M. et al. 1995 AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–4414PubMedCrossRefGoogle Scholar
  38. Ward S. M. 2000 Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd). Euphytica 116, 11–16.CrossRefGoogle Scholar
  39. Weber J. L. 1990 Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics 7, 524–530.PubMedCrossRefGoogle Scholar
  40. Wilson H. D. 1988 Quinoa biosystematics I: Domesticated populations. Econ. Bot. 42, 461–477Google Scholar
  41. Wilson H. and Manhart J. 1993 Crop/weed gene flow: Chenopodium quinoa Willd. and C. berlandieri Moq. Theor. Appl. Genet. 86, 642–648CrossRefGoogle Scholar
  42. Zamir D. and Tadmor Y. 1986 Unequal segregation of nuclear genes in plants. Bot. Gaz. 147, 355–358.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • D. E. Jarvis
    • 1
  • O. R. Kopp
    • 2
  • E. N. Jellen
    • 1
  • M. A. Mallory
    • 1
  • J. Pattee
    • 2
  • A. Bonifacio
    • 3
  • C. E. Coleman
    • 1
  • M. R. Stevens
    • 1
  • D. J. Fairbanks
    • 1
  • P. J. Maughan
    • 1
  1. 1.Department of Plant and Animal SciencesBrigham Young UniversityProvoUSA
  2. 2.Biology DepartmentUtah Valley State UniversityOremUSA
  3. 3.Fundacion PROINPA CasillaCochabambaBolivia

Personalised recommendations