Advertisement

Seasonal contrast in the vertical profiles of aerosol number concentrations and size distributions over India: Implications from RAWEX aircraft campaign

  • Mukunda M GogoiEmail author
  • N B Lakshmi
  • Vijayakumar S Nair
  • Sobhan Kumar Kompalli
  • K Krishna Moorthy
  • S Suresh Babu
Article
  • 46 Downloads

Abstract

Aircraft measurements of the vertical profiles of aerosol total number concentrations and size distributions (in the size range of 0.5–20 μm) were made over seven geographically diverse locations of the Indian mainland during two contrasting seasons, winter (December 2012) and spring (April–May 2013), as a part of the regional aerosol warming experiment (RAWEX). Our observations revealed an increase in the vertical extent of aerosol loading during spring having a significant enhancement in coarse mode aerosols in the lower free-troposphere (FT) over western and central parts of India and the Indo-Gangetic plains (IGP). The particulate depolarisation ratio (PDR) derived from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) over the same region showed the presence of dust (including polluted dust) at higher altitudes in spring. Concurrent and collocated measurements of aerosol scattering and absorption properties aboard the aircraft revealed that the FT enhancement in coarse mode aerosol loading during spring is associated with a decrease in single scattering albedo and an increase in columnar absorption aerosol optical depth. This confirms that the elevated layers of coarse mode aerosols seen during spring are absorbing in nature, especially over the IGP. The presence of such coarse-mode absorbing aerosols plays a crucial role in governing the radiation balance over the IGP in spring through the diabatic heating of the upper atmosphere.

Keywords

Aerosol number concentration size distribution coarse mode fraction single scattering albedo CALIPSO vertical profile 

Notes

Acknowledgements

This study was carried out as part of the Regional Aerosol Warming Experiment (RAWEX) under the Aerosols and Radiative Forcing over India (ARFI) project of ISRO-Geosphere Biosphere Programme (ISRO-GBP). We acknowledge the National Remote Sensing Centre (NRSC), Hyderabad for the support with the aircraft operation and measurements. S. Suresh Babu acknowledges the Department of Science Technology for the Swarna Jayanti Fellowship. We also acknowledge NOAA Air Resources Laboratory for the provision of the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.html) used in this publication. The CALIPSO data were obtained from the NASA Langley Research Centre and Atmospheric Sciences Data Centre.

References

  1. Anderson T L and Ogren J A 1998 Determining aerosol radiative properties using the TSI 3563 integrating nephelometer; Aerosol Sci. Technol. 29 57–69.Google Scholar
  2. Arnott W P, Hamasha K, Moosmuller H, Sheridan P J and Ogren J A 2005 Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer; Aerosol Sci. Technol. 39(1) 17–29.CrossRefGoogle Scholar
  3. Babu S S, Moorthy K K and Satheesh S K 2006 Temporal heterogeneity in aerosol characteristics at a tropical coastal station and the resulting radiative impacts; In: Remote Sensing of the Atmosphere and Clouds Proceedings of SPIE vol. 6408, pp. 640813.Google Scholar
  4. Babu S S et al. 2013 Trends in aerosol optical depth over Indian region: Potential causes and impact indicators; J. Geophys. Res. Atmos. 118,  https://doi.org/10.1002/2013jd020507.Google Scholar
  5. Babu S S, Nair V S, Gogoi M M and Moorthy K K 2016 Seasonal variation of vertical distribution of aerosol single scattering albedo over Indian sub-continent: RAWEX aircraft observations; Atmos. Environ. 125 312–323.CrossRefGoogle Scholar
  6. Barman S C et al. 2017 Assessment of ambient air quality in Lucknow city, CSIR-Indian Institute of Toxicology Research, Lucknow, 2017.Google Scholar
  7. Beegum N, Moorthy K K, Babu S S, Satheesh S K, Vinoj V, Badarinath K V S, Safai P D, Devara P C S, Singh S, Vinod, Dumka U C and Pant P 2009 Spatial distribution of aerosol black carbon over India during pre-monsoon season; Atmos. Environ. 43 1071–1078.CrossRefGoogle Scholar
  8. Census 2011 Primary census abstracts, Registrar general of India, Ministry of Home Affairs, Government of India, http://www.censusindia.gov.in/pca/Searchdata.aspx.
  9. Dubovik O and Li Z et al. 2018 Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives; J. Quant. Spectrosc. Radiat. Transfer 224 474–511.CrossRefGoogle Scholar
  10. Freudenthaler V, Esselborn M, Wiegner M, Heese B, Tesche M, Ansmann A, Müller D, Althausen D, Wirth M, Fix A, Ehret G, Knippertz P, Toledano C, Gasteiger J, Garhammer M and Seefeldner M 2009 Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006; Tellus B 61 16579.CrossRefGoogle Scholar
  11. Gautam R, Hsu N C and Lau K M 2010 Pre-monsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: Implications for regional climate warming; J. Geophys. Res. 115(D17) 1984–2012.CrossRefGoogle Scholar
  12. Gautam R, Hsu N C, Tsay S C, Lau K M, Holben B, Bell S, Smirnov A, Li C, Hansell R, Ji Q, Payra S, Aryal D, Kayastha R and Kim K M 2011 Accumulation of aerosols over the Indo-Gangetic plains and southern slopes of the Himalayas: Distribution, properties and radiative effects during the 2009 pre-monsoon season; Atmos. Chem. Phys. 11(24) 12841–12863.CrossRefGoogle Scholar
  13. Ghosh S, Gupta T, Rastogi N, Gaur A, Misra A, Tripathi S N, Paul D, Tare V, Prakash O, Bhattu D, Dwivedi A K, Kaul D S, Dalai R and Mishra S K 2014 Chemical characterization of summertime dust events at kanpur: Insight into the sources and level of mixing with anthropogenic emissions; Aerosol Air Qual. Res. 14 879–891.Google Scholar
  14. Giglio L, Descloitres J, Justice C O and Kaufman Y 2003 An enhanced contextual fire detection algorithm for MODIS; Remote Sens. Environ. 87 273–282.  https://doi.org/10.1016/s0034-4257(03)00184-6.CrossRefGoogle Scholar
  15. Gogoi M M, Moorthy K K, Babu S S and Bhuyan P K 2009 Climatology of columnar aerosol properties and the influence of synoptic conditions: First-time results from the northeastern region of India; J. Geophys. Res. 114(D8) 1984–2012.CrossRefGoogle Scholar
  16. Gogoi M M, Pathak N, Moorthy K K, Bhuyan P K, Babu S S, Bhuyan K and Kalita G 2011 Multi-year investigations of near surface and columnar aerosols over Dibrugarh, northeastern location of India: Heterogeneity in source impacts; Atmos. Env. 45 1714–1724.CrossRefGoogle Scholar
  17. Gogoi M M, Babu S S, Moorthy K K, Manoj M R and Chaubey J P 2013 Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust; Atmos. Environ. 73 92–102.CrossRefGoogle Scholar
  18. Gogoi M M, Moorthy K K, Kompalli S K, Chaubey J P, Babu S S, Manoj M R, Nair V S and Prabhu T P 2014 Physical and optical properties of aerosols in a free tropospheric environment: Results from long-term observations over western trans-Himalayas; Atmos. Environ. 84 262–274.CrossRefGoogle Scholar
  19. Huebert B J, Howell S G, Covert D S, Bertram T, Clarke A D, Anderson J R, Lafleur B G, Seebaugh W R, Wilson J C, Gesler D, Blomquist B W and Fox J 2004 PELTI: Measuring the passing efficiency of an airborne low turbulence aerosol inlet; Aerosol Sci. Technol. 38 803–826.Google Scholar
  20. Junge CE 1963 Air chemistry and radioactivity; Academic Press, New York, pp. Xii, 382.Google Scholar
  21. Kompalli S K, Babu S S, Moorthy K K, Manoj M R, Kiran Kumar N V P, Hareef Baba Shaeb K and Joshi A K 2014 Aerosol black carbon characteristics over central India: Temporal variation and its dependence on mixed layer height; Atmos. Res. 147–148 27–37.CrossRefGoogle Scholar
  22. Lau K M, Kim M K and Kim K M 2006 Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau; Clim. Dyn. 26(78) 855–864.CrossRefGoogle Scholar
  23. Lawrence M G and Lelieveld J 2010 Atmospheric pollutant outflow from southern Asia: A review; Atmos. Chem. Phys. 10(22) 11017–11096.CrossRefGoogle Scholar
  24. Lelieveld J, Berresheim H, Borrmann S, Crutzen P J, Dentener F J, Fischer H, Feichter J, Flatau P J, Heland J, Holzinger R, Korrmann R, Lawrence M G, Levin Z, Markowicz K M, Mihalopoulos N, Minikin A, Ramanathan V, De Reus M, Roelofs G J, Scheeren H A, Sciare J, Schlager H, Schultz M, Siegmund P, Steil B, Stephanou EG, Stier P, Traub M, Warneke C, Williams J and Ziereis H 2002 Global air pollution crossroads over the Mediterranean; Science 298(5594) 794–799.CrossRefGoogle Scholar
  25. Li W J and Shao L Y 2009 Transmission electron microscopy study of aerosol particles from the brown hazes in northern China; J. Geophys. Res. 114 D09302.Google Scholar
  26. Mamouri R E and Ansmann A 2014 Fine and coarse dust separation with polarization lidar; Atmos. Meas. Tech. 7 3717–3735.CrossRefGoogle Scholar
  27. Mc Naughton C S, Clarke A D, Howell S G, Pinkerton M, Anderson B, Thornhill L, Hudgins C, Winstead E, Dibb J E, Scheuer E and Maring H 2007 Results from the DC-8 inlet characterization experiment DICE): Airborne versus surface sampling of mineral dust and sea salt aerosols; Aerosol Sci. Technol. 41 136–159.Google Scholar
  28. Mishra A K and Shibata T 2012a Climatological aspects of seasonal variation of aerosol vertical distribution over central Indo-Gangetic belt (IGB) inferred by the space-borne lidar CALIOP; Atmos. Environ. 46 365–375.CrossRefGoogle Scholar
  29. Mishra A K and Shibata T 2012b Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB); Atmos. Environ. 57 205–218.CrossRefGoogle Scholar
  30. Mönkkönen P, Koponen I, Lehtinen K, Hämeri K, Uma and Kulmala M 2005 Measurements in a highly polluted Asian mega city: Observations of aerosol number size distributions, modal parameters and nucleation events; Atmos. Chem. Phys. 5 57–66.CrossRefGoogle Scholar
  31. Moorthy K K and Satheesh S K 2000 Characteristics of aerosols over a remote island, Minicoy in the Arabian Sea: Optical properties and retrieved size characteristics; Quart. J. Roy. Meteorol. Soc. 126 81–109.Google Scholar
  32. Moorthy K K, Babu S S and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station – Part 1: Microphysical and optical properties; Ann. Geophys. 25 2293–2308.CrossRefGoogle Scholar
  33. Moorthy K K, Babu S S, Manoj M R and Satheesh S K 2013 Buildup of aerosols over the Indian region; Geophys. Res. Lett. 40(5) 1011–1014.CrossRefGoogle Scholar
  34. Nair V S, Moorthy K K, Alappattu D P, Kunhikrishnan P K, George S, Nair P R, Babu S S, Abish B, Satheesh S K, Tripathi S N, Niranjan K, Madhavan B L, Srikant V, Dutt C B S, Badarinath K V S and Reddy R R 2007 Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport; J. Geophys. Res. 112(D13) D13205.CrossRefGoogle Scholar
  35. Nair V S, Babu S S, Gogoi M M and Moorthy K K 2016 Large-scale enhancement in aerosol absorption in the lower free troposphere over continental India during pre-monsoon; Geophys. Res. Lett. 43 11453–11461,  https://doi.org/10.1002/2016gl070669.CrossRefGoogle Scholar
  36. Pillai P S and Moorthy K K 2001 Aerosol mass-size distributions at a tropical coastal environment: Response to mesoscale and synoptic processes; Atmos. Environ. 35 4099–4112.CrossRefGoogle Scholar
  37. Pósfai M, Axisa D, Tompa É, Freney E, Bruintjes R and Buseck P R 2013 Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia; Atmos. Res. 122 347–361.CrossRefGoogle Scholar
  38. Prospero J M, Charlson R J, Mohnen V, Jaenicke R, Delany A C, Meyers J, Zoller W and Rahn K 1983 The atmospheric aerosol system: An overview; Rev. Geophys. Space Phys. 21 1607–1629.CrossRefGoogle Scholar
  39. Reddy R R, Gopal K R, Narasimhulu K, Reddy L S S and Kumar K R 2007 Aerosol Size Distribution Variation in Anantapur (14.62°N, 77.65°E) Semi Arid Zone and its Impact on Aerosol Effective Radius; Aerosol and Air Quality Res. 7(4) 550–562.CrossRefGoogle Scholar
  40. Satheesh S K, Ramanathan V, Holben B N, Moorthy K K, Loeb N G, Maring H, Prospero J M and Savoie D 2002 Chemical, microphysical, and radiative effects of Indian Ocean aerosols; J. Geophys. Res. 107(D23) 4725.CrossRefGoogle Scholar
  41. Satheesh S K, Moorthy K K, Babu S S, Vinoj V and Dutt C B S 2008 Climate implications of large warming by elevated aerosol over India; Geophys. Res. Lett. 35(19) L19809.CrossRefGoogle Scholar
  42. Sullivan R C and Prather K A 2007 Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow; Environ. Sci. Technol. 41(23) 8062–8069.CrossRefGoogle Scholar
  43. Tesche M, Ansmann A, Müller D, Althausen D, Engelmann R, Freudenthaler V and Groß S 2009 Vertically resolved separation of dust and smoke over Cape Verde using multi-wavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008; J. Geophys. Res. 114 D13202.CrossRefGoogle Scholar
  44. Vanderpool R W and Rubow K L 1988 Generation of large, solid, monodisperse calibration aerosols; Aerosol Sci. Tech. 9 65–69.CrossRefGoogle Scholar
  45. Verma S, Boucher O, Shekar Reddy M, Upadhyaya H C, Le Van P, Binkowski F S and Sharma O P 2012 Tropospheric distribution of sulphate aerosols mass and number concentration during INDOEX-IFP and its transport over the Indian Ocean: A GCM study; Atmos. Chem. Phys. 12(14) 6185–6196.CrossRefGoogle Scholar
  46. Volckens J and Peters T M 2005 Counting and particle transmission efficiency of the aerodynamic particle sizer; J. Aerosol Sci. 36(12) 1400–1408.CrossRefGoogle Scholar
  47. Winker D M, Hunt W H and McGill M J 2007 Initial performance assessment of CALIOP; Geophys. Res. Lett. 34(19) L19803.CrossRefGoogle Scholar
  48. Yang E S, Gupta P and Christopher S A 2009a Net radiative effect of dust aerosols from satellite measurements over Sahara; Geophys. Res. Lett. 36(18) L18812.CrossRefGoogle Scholar
  49. Yang M, Howell S G, Zhuang J and Huebert B J 2009b Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE; Atmos. Chem. Phys. 9(6) 2035–2050.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Mukunda M Gogoi
    • 1
    Email author
  • N B Lakshmi
    • 1
  • Vijayakumar S Nair
    • 1
  • Sobhan Kumar Kompalli
    • 1
  • K Krishna Moorthy
    • 2
  • S Suresh Babu
    • 1
  1. 1.Space Physics LaboratoryVikram Sarabhai Space CentreThiruvananthapuramIndia
  2. 2.Centre for Atmospheric and Oceanic SciencesIndian Institute of ScienceBengaluruIndia

Personalised recommendations