Advertisement

Noise characteristics of GPS time series and their influence on velocity uncertainties

  • Jagat Dwipendra Ray
  • M Sithartha Muthu VijayanEmail author
  • Ashok Kumar
Article
  • 212 Downloads

Abstract

Accurate geodetic crustal deformation estimates with realistic uncertainties are essential to constrain geophysical models. A selection of appropriate noise model in geodetic data processing based on the characteristics of the geodetic time series being studied is the key to achieving realistic uncertainties. In this study, we report noise characteristics of a 12-yr long global positioning system (GPS) geodetic time series (2002–2013) obtained from 22 continuous mode GPS stations situated in north-east India, Nepal and Bhutan Himalayas which are one of the most complex tectonic regimes influenced by the largest hydrological loading and impacted with a load of the largest inland glaciers. A comparison of the maximum log likelihood estimates of three different noise models – (i) white plus power law (WPL), (ii) white plus flicker law (WFL) and (iii) white plus random walk noise – adopted to process the GPS time series reveals that among the three models, \(\sim \)74% of the time series can be better described either by WPL or WFL model. The results further showed that the horizontals in Nepal Himalayas and verticals in north-east India are highly correlated with time. The impact analysis of noise models on velocity estimation shows that the conventional way of assuming time uncorrelated noise models (white noise) for constraining the crustal deformation of this region severely underestimates rate uncertainty up to 14 times. Such simplistic assumption, being adopted in many geodetic crustal deformation studies, will completely mislead the geophysical interpretations and has the potential danger of identifying any inter/intra-plate tectonic quiescence as active tectonic deformation. Furthermore, the analysis on the effect of the time span of observations on velocity uncertainties suggests 3 yr of continuous observations as a minimum requirement to estimate the horizontal velocities with realistic uncertainties for constraining the tectonics of this region.

Keywords

Noise GPS time series maximum likelihood estimation velocity crustal deformation error analysis 

Notes

Acknowledgements

We acknowledge the grant from the Ministry of Earth Sciences, Govt. of India (MoES/P.O (Seismo)/1(26)/09) for the maintenance of the permanent stations in north-east India. We would like to thank Simon Williams for providing the CATS software. We also thank the Survey of India (SOI), Govt. of India for providing us the data of the permanent GPS stations in Aizawl, Guwahati, Imphal, Sikkim and Shillong. We thank Jean Philippe Avouac and his group at Caltech Tectonics Observatory for establishing, and maintaining the GPS stations in Nepal and opening up the data for public use. We thank Roger Bilham and Geologic Survey of Bhutan for the Bhutan data. We are profoundly thankful to UNAVCO for making the data publicly available with easily accessible interface to the data archive.

Supplementary material

12040_2019_1179_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (doc 27 KB)
12040_2019_1179_MOESM2_ESM.doc (39 kb)
Supplementary material 2 (doc 39 KB)
12040_2019_1179_MOESM3_ESM.doc (39 kb)
Supplementary material 3 (doc 39 KB)
12040_2019_1179_MOESM4_ESM.doc (40 kb)
Supplementary material 4 (doc 39 KB)

References

  1. Ader T, Avouac J P, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota S N and Rajaure S 2012 Convergence rate across the Nepal Himalaya and interseismic coupling on the main Himalayan thrust: Implications for seismic hazard; J. Geophys. Res. 117 B0443,  https://doi.org/10.1029/2011JB009071.CrossRefGoogle Scholar
  2. Agnew D C 1992 The time-domain behavior of power-law noises; Geophys. Res. Lett. 19(4) 333–336.CrossRefGoogle Scholar
  3. Altamimi Z, Collilieux X and Métivier L 2011 ITRF2008: An improved solution of the international terrestrial reference frame; J. Geod. 85(8) 457–473.CrossRefGoogle Scholar
  4. Argus D F, Peltier W R and Watkins M M 1999 Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy; J. Geophys. Res. 104(B12) 29,077–29,093.CrossRefGoogle Scholar
  5. Amiri-Simkooei A R, Tiberius C C J M and Teunissen S P 2007 Assessment of noise in GPS coordinate time series: Methodology and results; J. Geophys. Res. 112 B07413,  https://doi.org/10.1029/2006JB004913.CrossRefGoogle Scholar
  6. Banerjee P and Bürgmann R 2002 Convergence across the northwest Himalaya from GPS measurements; Geophys. Res. Lett. 29(13) 1652,  https://doi.org/10.1029/2002GL015184 CrossRefGoogle Scholar
  7. Beavan J 2005 Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from  https://doi.org/10.1029/2003JB002741 US deep drilled braced monuments; J. Geophys. Res. 110 B084,  https://doi.org/10.1029/2005JB003642
  8. Bettinelli P, Avouac J P, Flouzat M, Jouanne F, Bollinger L, Willis P and Chitrakar G R 2006 Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements; J. Geod. 80(8–11) 567–589.CrossRefGoogle Scholar
  9. Blewitt G and Lavallée D 2002 Effect of annual signals on geodetic velocity; J. Geophys. Res. 107 2010,  https://doi.org/10.1029/2001JB000570 CrossRefGoogle Scholar
  10. Böhm J, Heinkelmann R and Schuh H 2007 Short note: A global model of pressure and temperature for geodetic applications; J. Geod. 81(10) 679–683.CrossRefGoogle Scholar
  11. Cardellach E, Elósegui P and Davis J L 2007 Global distortion of GPS networks associated with satellite antenna model errors; J. Geophys. Res. 112 B07405,  https://doi.org/10.1029/2006JB004675 CrossRefGoogle Scholar
  12. Craig T J and Calais E 2014 Strain accumulation in the New Madrid and Wabash Valley seismic zones from 14 years of continuous GPS observation; J. Geophys. Res. 119.  https://doi.org/10.1002/2014JB011498.Google Scholar
  13. Estey L H and Meertens C M 1999 TEQC: The multi-purpose toolkit for GPS/GLONASS data; GPS Solut. 3(1) 42–49.CrossRefGoogle Scholar
  14. Herring T 2003 MATLAB tools for viewing GPS velocities and time series; GPS Solut. 7 194–199.  https://doi.org/10.1007/s10291-003-0068-0.CrossRefGoogle Scholar
  15. Herring T A, King R W and McClusky S C 2010a Documentation of the GAMIT GPS analysis software release 10.4; Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  16. Herring T A, King R W and McClusky S C 2010b GLOBK, global kalman filter VLBI and GPS analysis program, version 10.4; Department of Earth, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  17. Kendall M and Stuart A 1979 The Advanced Theory of Statistics: Inference and Relationship; 4th edn, Vol. 2, Charles Griffin, London, pp. 240–274.Google Scholar
  18. Kouba J 2008 Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1); J. Geod. 82(4–5) 193–205.CrossRefGoogle Scholar
  19. Langbein J 2012 Estimating rate uncertainty with maximum likelihood: Differences between power-law and flicker–random-walk models; J. Geod. 86(9) 775–783.CrossRefGoogle Scholar
  20. Langbein J 2004 Noise in two-color electronic distance meter measurements revisited; J. Geophys. Res. 109 B04406,  https://doi.org/10.1029/2003JB002819 CrossRefGoogle Scholar
  21. Langbein J 2008 Noise in GPS displacement measurements from Southern California and Southern Nevada; J. Geophys. Res. 113 B05405,  https://doi.org/10.1029/2007JB005247 CrossRefGoogle Scholar
  22. Langbein J and Johnson H 1997 Correlated errors in geodetic time series: Implications for time-dependent deformation; J. Geophys. Res. 102(B1) 591–603.CrossRefGoogle Scholar
  23. Langbein J O, Linker M F, McGarr A F and Slater L E 1987 Precision of two-color geodimeter measurements: Results from 15 months of observations; J. Geophys. Res. 92(B11) 11644–11656.CrossRefGoogle Scholar
  24. Lyard F, Lefevre F, Letellier T and Francis O 2006 Modelling the global ocean tides: Modern insights from FES2004; Ocean. Dynam. 56(5–6) 394–415.CrossRefGoogle Scholar
  25. Mahesh P, Catherine J K, Gahalaut V K, Kundu B, Ambikapathy A, Bansal A, Premkishore L, Narsaiah M, Ghavri S, Chadha R K, Choudhary P, Singh D K, Singh S K, Kumar S, Nagarajan B, Bhatt B C, Tiwari R P, Kumar A, Kumar A, Bhu H and Kalita A 2012 Rigid Indian plate: Constraints from GPS measurements; Gondwana Res. 22(3) 1068–1072.CrossRefGoogle Scholar
  26. Mandelbrot B B and Van Ness J W 1968 Fractional Brownian motions, fractional noises and applications; SIAM Rev. 10(4) 422–437.CrossRefGoogle Scholar
  27. Mao A, Harrison C G and Dixon T H 1999 Noise in GPS coordinate time series; J. Geophys. Res. 104(B2) 2797–2816.CrossRefGoogle Scholar
  28. Ray J D 2016 Noise characteristics of geodetic position time series and analysis of hydrologic deformation of north east India and Nepal Himalaya using GPS and GRACE; PhD Thesis, Tezpur University, Assam, India.Google Scholar
  29. Santamaría-Gómez A, Bouin M N, Collilieux X and Wöppelmann G 2011 Correlated errors in GPS position time series: Implications for velocity estimates; J. Geophys. Res. 116 B01405,  https://doi.org/10.1029/2010JB007701 CrossRefGoogle Scholar
  30. Schaer S, Gurtner W and Feltens J 1998 IONEX: The ionosphere map exchange format version 1; In: Proceedings of the IGS AC Workshop, Darmstadt, Germany (Vol. 9, No. 11).Google Scholar
  31. Steigenberger P, Rothacher M, Fritsche M, Rülke A and Dietrich R 2009 Quality of reprocessed GPS satellite orbits; J. Geod. 83(3–4) 241–248.CrossRefGoogle Scholar
  32. Tregoning P and Van Dam T 2005 Atmospheric pressure loading corrections applied to GPS data at the observation level; Geophys. Res. Lett. 32(22) L22310,  https://doi.org/10.1029/2005GL024104 CrossRefGoogle Scholar
  33. Wang W, Zhao B, Wang Q and Yang S 2012 Noise analysis of continuous GPS coordinate time series for CMONOC; Adv. Space Res. 49(5) 943–956.CrossRefGoogle Scholar
  34. Williams S D 2003 Offsets in global positioning system time series; J. Geophys. Res. 108(B6) 2310.  https://doi.org/10.1029/2002JB002156 CrossRefGoogle Scholar
  35. Williams S D 2008 CATS: GPS coordinate time series analysis software; GPS Solut. 12(2) 147–153.CrossRefGoogle Scholar
  36. Williams S D and Willis P 2006 Error analysis of weekly station coordinates in the DORIS network; J. Geod. 80(8–11) 525–539.CrossRefGoogle Scholar
  37. Williams S D, Bock Y, Fang P, Jamason P, Nikolaidis R M, Prawirodirdjo L, Miller M and Johnson D J 2004 Error analysis of continuous GPS position time series; J. Geophys. Res. 109 B03412,  https://doi.org/10.1029/2003JB002741 CrossRefGoogle Scholar
  38. Wyatt F 1982 Displacement of surface monuments: Horizontal motion; J. Geophys. Res. 87 979–989.CrossRefGoogle Scholar
  39. Wyatt F 1989 Displacement of surface monuments – Vertical motion; J. Geophys. Res. 94 1655–1664.CrossRefGoogle Scholar
  40. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S and Behr J 1997 Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities; J. Geophys. Res. 102(B8) 18,035–18,055.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsTezpur UniversityTezpurIndia
  2. 2.Department of PhysicsNIT NagalandDimapurIndia
  3. 3.Multi-Scale Modelling Programme (MSMP)CSIR Fourth Paradigm Institute [CSIR 4PI]BengaluruIndia

Personalised recommendations