Skip to main content
Log in

Noise characteristics of GPS time series and their influence on velocity uncertainties

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Accurate geodetic crustal deformation estimates with realistic uncertainties are essential to constrain geophysical models. A selection of appropriate noise model in geodetic data processing based on the characteristics of the geodetic time series being studied is the key to achieving realistic uncertainties. In this study, we report noise characteristics of a 12-yr long global positioning system (GPS) geodetic time series (2002–2013) obtained from 22 continuous mode GPS stations situated in north-east India, Nepal and Bhutan Himalayas which are one of the most complex tectonic regimes influenced by the largest hydrological loading and impacted with a load of the largest inland glaciers. A comparison of the maximum log likelihood estimates of three different noise models – (i) white plus power law (WPL), (ii) white plus flicker law (WFL) and (iii) white plus random walk noise – adopted to process the GPS time series reveals that among the three models, \(\sim \)74% of the time series can be better described either by WPL or WFL model. The results further showed that the horizontals in Nepal Himalayas and verticals in north-east India are highly correlated with time. The impact analysis of noise models on velocity estimation shows that the conventional way of assuming time uncorrelated noise models (white noise) for constraining the crustal deformation of this region severely underestimates rate uncertainty up to 14 times. Such simplistic assumption, being adopted in many geodetic crustal deformation studies, will completely mislead the geophysical interpretations and has the potential danger of identifying any inter/intra-plate tectonic quiescence as active tectonic deformation. Furthermore, the analysis on the effect of the time span of observations on velocity uncertainties suggests 3 yr of continuous observations as a minimum requirement to estimate the horizontal velocities with realistic uncertainties for constraining the tectonics of this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ader T, Avouac J P, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota S N and Rajaure S 2012 Convergence rate across the Nepal Himalaya and interseismic coupling on the main Himalayan thrust: Implications for seismic hazard; J. Geophys. Res. 117 B0443, https://doi.org/10.1029/2011JB009071.

    Article  Google Scholar 

  • Agnew D C 1992 The time-domain behavior of power-law noises; Geophys. Res. Lett. 19(4) 333–336.

    Article  Google Scholar 

  • Altamimi Z, Collilieux X and Métivier L 2011 ITRF2008: An improved solution of the international terrestrial reference frame; J. Geod. 85(8) 457–473.

    Article  Google Scholar 

  • Argus D F, Peltier W R and Watkins M M 1999 Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy; J. Geophys. Res. 104(B12) 29,077–29,093.

    Article  Google Scholar 

  • Amiri-Simkooei A R, Tiberius C C J M and Teunissen S P 2007 Assessment of noise in GPS coordinate time series: Methodology and results; J. Geophys. Res. 112 B07413, https://doi.org/10.1029/2006JB004913.

    Article  Google Scholar 

  • Banerjee P and Bürgmann R 2002 Convergence across the northwest Himalaya from GPS measurements; Geophys. Res. Lett. 29(13) 1652, https://doi.org/10.1029/2002GL015184

    Article  Google Scholar 

  • Beavan J 2005 Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from https://doi.org/10.1029/2003JB002741 US deep drilled braced monuments; J. Geophys. Res. 110 B084, https://doi.org/10.1029/2005JB003642

  • Bettinelli P, Avouac J P, Flouzat M, Jouanne F, Bollinger L, Willis P and Chitrakar G R 2006 Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements; J. Geod. 80(8–11) 567–589.

    Article  Google Scholar 

  • Blewitt G and Lavallée D 2002 Effect of annual signals on geodetic velocity; J. Geophys. Res. 107 2010, https://doi.org/10.1029/2001JB000570

    Article  Google Scholar 

  • Böhm J, Heinkelmann R and Schuh H 2007 Short note: A global model of pressure and temperature for geodetic applications; J. Geod. 81(10) 679–683.

    Article  Google Scholar 

  • Cardellach E, Elósegui P and Davis J L 2007 Global distortion of GPS networks associated with satellite antenna model errors; J. Geophys. Res. 112 B07405, https://doi.org/10.1029/2006JB004675

    Article  Google Scholar 

  • Craig T J and Calais E 2014 Strain accumulation in the New Madrid and Wabash Valley seismic zones from 14 years of continuous GPS observation; J. Geophys. Res. 119. https://doi.org/10.1002/2014JB011498.

    Google Scholar 

  • Estey L H and Meertens C M 1999 TEQC: The multi-purpose toolkit for GPS/GLONASS data; GPS Solut. 3(1) 42–49.

    Article  Google Scholar 

  • Herring T 2003 MATLAB tools for viewing GPS velocities and time series; GPS Solut. 7 194–199. https://doi.org/10.1007/s10291-003-0068-0.

    Article  Google Scholar 

  • Herring T A, King R W and McClusky S C 2010a Documentation of the GAMIT GPS analysis software release 10.4; Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.

  • Herring T A, King R W and McClusky S C 2010b GLOBK, global kalman filter VLBI and GPS analysis program, version 10.4; Department of Earth, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.

  • Kendall M and Stuart A 1979 The Advanced Theory of Statistics: Inference and Relationship; 4th edn, Vol. 2, Charles Griffin, London, pp. 240–274.

  • Kouba J 2008 Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1); J. Geod. 82(4–5) 193–205.

    Article  Google Scholar 

  • Langbein J 2012 Estimating rate uncertainty with maximum likelihood: Differences between power-law and flicker–random-walk models; J. Geod. 86(9) 775–783.

    Article  Google Scholar 

  • Langbein J 2004 Noise in two-color electronic distance meter measurements revisited; J. Geophys. Res. 109 B04406, https://doi.org/10.1029/2003JB002819

    Article  Google Scholar 

  • Langbein J 2008 Noise in GPS displacement measurements from Southern California and Southern Nevada; J. Geophys. Res. 113 B05405, https://doi.org/10.1029/2007JB005247

    Article  Google Scholar 

  • Langbein J and Johnson H 1997 Correlated errors in geodetic time series: Implications for time-dependent deformation; J. Geophys. Res. 102(B1) 591–603.

    Article  Google Scholar 

  • Langbein J O, Linker M F, McGarr A F and Slater L E 1987 Precision of two-color geodimeter measurements: Results from 15 months of observations; J. Geophys. Res. 92(B11) 11644–11656.

    Article  Google Scholar 

  • Lyard F, Lefevre F, Letellier T and Francis O 2006 Modelling the global ocean tides: Modern insights from FES2004; Ocean. Dynam. 56(5–6) 394–415.

    Article  Google Scholar 

  • Mahesh P, Catherine J K, Gahalaut V K, Kundu B, Ambikapathy A, Bansal A, Premkishore L, Narsaiah M, Ghavri S, Chadha R K, Choudhary P, Singh D K, Singh S K, Kumar S, Nagarajan B, Bhatt B C, Tiwari R P, Kumar A, Kumar A, Bhu H and Kalita A 2012 Rigid Indian plate: Constraints from GPS measurements; Gondwana Res. 22(3) 1068–1072.

    Article  Google Scholar 

  • Mandelbrot B B and Van Ness J W 1968 Fractional Brownian motions, fractional noises and applications; SIAM Rev. 10(4) 422–437.

    Article  Google Scholar 

  • Mao A, Harrison C G and Dixon T H 1999 Noise in GPS coordinate time series; J. Geophys. Res. 104(B2) 2797–2816.

    Article  Google Scholar 

  • Ray J D 2016 Noise characteristics of geodetic position time series and analysis of hydrologic deformation of north east India and Nepal Himalaya using GPS and GRACE; PhD Thesis, Tezpur University, Assam, India.

  • Santamaría-Gómez A, Bouin M N, Collilieux X and Wöppelmann G 2011 Correlated errors in GPS position time series: Implications for velocity estimates; J. Geophys. Res. 116 B01405, https://doi.org/10.1029/2010JB007701

    Article  Google Scholar 

  • Schaer S, Gurtner W and Feltens J 1998 IONEX: The ionosphere map exchange format version 1; In: Proceedings of the IGS AC Workshop, Darmstadt, Germany (Vol. 9, No. 11).

  • Steigenberger P, Rothacher M, Fritsche M, Rülke A and Dietrich R 2009 Quality of reprocessed GPS satellite orbits; J. Geod. 83(3–4) 241–248.

    Article  Google Scholar 

  • Tregoning P and Van Dam T 2005 Atmospheric pressure loading corrections applied to GPS data at the observation level; Geophys. Res. Lett. 32(22) L22310, https://doi.org/10.1029/2005GL024104

    Article  Google Scholar 

  • Wang W, Zhao B, Wang Q and Yang S 2012 Noise analysis of continuous GPS coordinate time series for CMONOC; Adv. Space Res. 49(5) 943–956.

    Article  Google Scholar 

  • Williams S D 2003 Offsets in global positioning system time series; J. Geophys. Res. 108(B6) 2310. https://doi.org/10.1029/2002JB002156

    Article  Google Scholar 

  • Williams S D 2008 CATS: GPS coordinate time series analysis software; GPS Solut. 12(2) 147–153.

    Article  Google Scholar 

  • Williams S D and Willis P 2006 Error analysis of weekly station coordinates in the DORIS network; J. Geod. 80(8–11) 525–539.

    Article  Google Scholar 

  • Williams S D, Bock Y, Fang P, Jamason P, Nikolaidis R M, Prawirodirdjo L, Miller M and Johnson D J 2004 Error analysis of continuous GPS position time series; J. Geophys. Res. 109 B03412, https://doi.org/10.1029/2003JB002741

    Article  Google Scholar 

  • Wyatt F 1982 Displacement of surface monuments: Horizontal motion; J. Geophys. Res. 87 979–989.

    Article  Google Scholar 

  • Wyatt F 1989 Displacement of surface monuments – Vertical motion; J. Geophys. Res. 94 1655–1664.

    Article  Google Scholar 

  • Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S and Behr J 1997 Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities; J. Geophys. Res. 102(B8) 18,035–18,055.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the grant from the Ministry of Earth Sciences, Govt. of India (MoES/P.O (Seismo)/1(26)/09) for the maintenance of the permanent stations in north-east India. We would like to thank Simon Williams for providing the CATS software. We also thank the Survey of India (SOI), Govt. of India for providing us the data of the permanent GPS stations in Aizawl, Guwahati, Imphal, Sikkim and Shillong. We thank Jean Philippe Avouac and his group at Caltech Tectonics Observatory for establishing, and maintaining the GPS stations in Nepal and opening up the data for public use. We thank Roger Bilham and Geologic Survey of Bhutan for the Bhutan data. We are profoundly thankful to UNAVCO for making the data publicly available with easily accessible interface to the data archive.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sithartha Muthu Vijayan.

Additional information

Corresponding Editor: Munukutla Radhakrishna

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, J.D., Vijayan, M.S.M. & Kumar, A. Noise characteristics of GPS time series and their influence on velocity uncertainties. J Earth Syst Sci 128, 146 (2019). https://doi.org/10.1007/s12040-019-1179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1179-5

Keywords

Navigation