Advertisement

Retrieval of Martian ozone and dust from SPICAM spectrometer for MY27–MY28

  • Ashimananda Modak
  • Varun SheelEmail author
  • Franck Montmessin
Article
  • 66 Downloads

Abstract

Ozone \((\hbox {O}_{3})\) is important in the stabilisation of \(\hbox {CO}_{{2}}\) in the Martian atmosphere and thus it is important to study the spatio-temporal variability of \(\hbox {O}_{{3}}\). We retrieve two years of total columnar \(\hbox {O}_{{3}}\) from raw spectral data provided by the SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument aboard the Mars Express. The seasonal variability is studied in tropical, mid- and high latitudes and is compared with simulations by a photochemical coupled general circulation model (GCM). The high latitudes exhibit the largest seasonal variations in \(\hbox {O}_{{3}}\), with a winter high and a summer low and a comparison with GCM results is good in general. We have studied the correlation of \(\hbox {O}_{{3}}\) with dust, retrieved simultaneously from SPICAM observations. In southern tropical latitudes, the columnar \(\hbox {O}_{{3}}\) is seen to increase during a global dust storm year (Martian year (MY) 28) compared to the \(\hbox {O}_{{3}}\) column values during a year without global dust storm (MY27), although the water vapour column between these years remains unchanged. This indicates the radiative impact of dust on \(\hbox {O}_{{3}}\) and its retrieval. We also study the ozone–carbon monoxide correlation as a tracer of dynamics. The dynamical contribution to the \(\hbox {O}_{{3}}\) column is found to be the highest during winter over the southern polar region.

Keywords

Ozone–dust correlation retrieval of ozone \(\mathrm{O}_{3}-\mathrm{CO}\) correlation SPICAM Martian ozone 

Notes

Acknowledgements

The authors would like to thank Francios Forget and Ehouran Millour for their extensive support in providing the source code of their LMD-GCM, which was then run on the 100 Tf high-performance computing system at our institute (PRL).

References

  1. Barth C A and Hord C W 1971 Mariner ultraviolet spectrometer: Topography and polar cap; Science 173(3993) 197–201.CrossRefGoogle Scholar
  2. Barth C A, Hord C W, Stewart A I, Lane A L, Dick M L and Anderson G P 1973 Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars; Science 179(4075) 795–796.CrossRefGoogle Scholar
  3. Bertaux J L, Korablev O, Perrier S, Quemerais E, Montmessin F, Leblanc F and Fedorova A 2006 SPICAM on Mars express: Observing modes and overview of UV spectrometer data and scientific results; J. Geophys. Res. Planets 111(E10),  https://doi.org/10.1029/2006JE002690.
  4. Blamont J and Chassefiere E 1993 First detection of ozone in the middle atmosphere of Mars from solar occultation measurements; Icarus 104(2) 324–336.CrossRefGoogle Scholar
  5. Clancy R T, Wolff M J, James P B, Smith E, Billawala Y N, Lee S W and Callan M 1996 Mars ozone measurements near the 1995 aphelion: Hubble space telescope ultraviolet spectroscopy with the faint object spectrograph; J. Geophys. Res. Planets 101(E5) 12,777–12,783.CrossRefGoogle Scholar
  6. Clancy R T, Sandor B J, García-Muñoz A, Lefèvre F, Smith M D, Wolff M J, Montmessin F, Murchie S L and Nair H 2013 First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere; Icarus 226 272–281,  https://doi.org/10.1016/j.icarus.2013.05.035.CrossRefGoogle Scholar
  7. Clancy RT, Wolff M J, Lefèvre F, Cantor B A, Malin M C and Smith M D 2016 Daily global mapping of Mars ozone column abundances with MARCI UV band imaging; Icarus 266 112–133.CrossRefGoogle Scholar
  8. Encrenaz T, Greathouse T K, Lefèvre F and Atreya S K 2012 Hydrogen peroxide on Mars: Observations, interpretation and future plans; Planet. Space Sci. 68 3–17.CrossRefGoogle Scholar
  9. Evans K F 1998 The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer; J. Atmos. Sci. 55 429–446.CrossRefGoogle Scholar
  10. Fast K, Kostiuk T, Espenak F, Annen J, Buhl D, Hewagama T and Schmülling F 2006 Ozone abundance on Mars from infrared heterodyne spectra: I. Acquisition, retrieval, and anti-correlation with water vapor; Icarus 181(2) 419–431.CrossRefGoogle Scholar
  11. Fast K E, Kostiuk T, Lefèvre F, Hewagama T, Livengood T A, Delgado J D, Annen J and Sonnabend G 2009 Comparison of HIPWAC and Mars express SPICAM observations of ozone on Mars 2006–2008 and variation from 1993 IRHS observations; Icarus 203(1) 20–27.CrossRefGoogle Scholar
  12. Fedorova A, Korablev O, Bertaux J-L, Rodin A, Kiselev A and Perrier S 2006 Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions; J. Geophys. Res. 111 E09S08,  https://doi.org/10.1029/2006JE002695.Google Scholar
  13. Forget F and Pierrehumbert R T 1997 Warming early Mars with carbon dioxide clouds that scatter infrared radiation; Science 278 1273–1276.CrossRefGoogle Scholar
  14. Forget F, Hourdin F, Fournier R, Hourdin C, Talagrand O, Collins M, Lewis S R, Read P L and Huot J-P 1999 Improved general circulation models of the Martian atmosphere from the surface to above 80 km; J. Geophys. Res. 104 24155–24175,  https://doi.org/10.1029/1999JE001025.CrossRefGoogle Scholar
  15. Franz H B, Trainer M G, Wong M H, Maha_y P R, Atreya S K, Manning H L and Stern J C 2015 Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover; Planet. Space Sci. 109 154–158.CrossRefGoogle Scholar
  16. Gierasch P J and Goody R M 1972 The effect of dust on the temperature of the Martian atmosphere; J. Atmos. Sci. 29 400–401.CrossRefGoogle Scholar
  17. González-Galindo F, López-Valverde M A, Angelats i Coll M and Forget F 2005 Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models; J. Geophys. Res. 110 E09008,  https://doi.org/10.1029/2004JE002312.CrossRefGoogle Scholar
  18. Gorshelev V, Serdyuchenko A, Weber M, Chehade W and Burrows J P 2014 High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K; Atmos. Meas. Tech. 7 609–624.CrossRefGoogle Scholar
  19. Guzewich S D, Talaat E R, Toigo A D, Waugh D W and McConnochie T H 2013 High-altitude dust layers on Mars: Observations with the Thermal Emission Spectrometer; J. Geophys. Res. Planets. 118 1177–1194,  https://doi.org/10.1002/jgre.20076.CrossRefGoogle Scholar
  20. Hartogh P, Błęcka M I, Jarchow C, Sagawa H, Lellouch E, de Val-Borro M and Cavalié T 2010 First results on Martian carbon monoxide from Herschel/HIFI observations; Astron. Astrophys. 521 L48,  https://doi.org/10.1051/0004-6361/201015159.CrossRefGoogle Scholar
  21. Heavens N G, Richardson M I, Kleinböl A, Kass D M, McCleese D J, Abdou W, Benson J L, Schofield J T, Shirley J H and Wolkenberg P M 2011 The vertical distribution of dust in the Martian atmosphere during northern spring and summer: 2. The high altitude tropical dust maximum; J. Geophys. Res. 116 E01007,  https://doi.org/10.1029/2010JE003692.CrossRefGoogle Scholar
  22. Krasnopolsky V A 1993 Photochemistry of the Martian atmosphere (mean conditions); Icarus 101 313–332.CrossRefGoogle Scholar
  23. Krasnopolsky V A 2006 Photochemistry of the Martian atmosphere: Seasonal, latitudinal, and diurnal variations; Icarus 185 153–170.CrossRefGoogle Scholar
  24. Lebonnois S, Qúemerais E, Montmessin F, Lefèvre F, Perrier S, Bertaux J-L and Forget F 2006 Vertical distribution of ozone on Mars as measured by SPICAM/Mars express using stellar occultations; J. Geophys. Res. Planets 111(E9),  https://doi.org/10.1029/2005JE002643.
  25. Lefèvre F, Lebonnois S, Montmessin F and Forget F 2004 Three-dimensional modeling of ozone on Mars; J. Geophys. Res. 109 E07004.CrossRefGoogle Scholar
  26. Lefèvre F, Bertaux J L, Clancy R T, Encrenaz T, Fast K, Forget F, Lebonnois S, Montmessin F and Perrier S 2008 Heterogeneous chemistry in the atmosphere of Mars; Nature 454(7207) 971–975,  https://doi.org/10.1038/nature07116.CrossRefGoogle Scholar
  27. Lemmon M T, Wolff M J, Bell J F III, Smith M D, Cantor B A and Smith P H 2015 Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission; Icarus 251 96–111,  https://doi.org/10.1016/j.icarus.2014.03.029.CrossRefGoogle Scholar
  28. Lindner B L 1988 Ozone on Mars: The effects of clouds and airborne dust; Planet. Space Sci. 36(2) 125–144.CrossRefGoogle Scholar
  29. Malicet J, Daumont D, Charbonnier J, Parisse C, Chakir A and Brion J 1995 Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence; J. Atmos. Chem. 21 263–273.CrossRefGoogle Scholar
  30. Martin L J and Zurek R W 1993 An analysis of the history of dust activity on Mars; J. Geophys. Res. 98 3221–3246.CrossRefGoogle Scholar
  31. Millour E, Forget F, Spiga A, Navarro T, Madeleine J B, Montabone L, Lefèvre F, Chaufray J Y, Lopez-Valverde M A, Gonzalez-Galindo F, Lewis S R, Read P L, Desjean M C and Huot J P, MCD/GCM Development Team 2014 The Mars climate database (MCD version 5.1); LPI Contrib. 1791 1184.Google Scholar
  32. Montabone L, Forget F, Millour E, Wilson R J, Lewis S R, Cantor B, Kass D, Kleinböhl A, Lemmon M T, Smith M D and Wolff M J 2015 Eight-year climatology of dust optical depth on Mars; Icarus 251 65–95,  https://doi.org/10.1016/j.icarus.2014.12.034.CrossRefGoogle Scholar
  33. Montmessin F and Lefèvre F 2013 Transport-driven formation of a polar ozone layer on Mars; Nat. Geosci. 6(11) 930–933.CrossRefGoogle Scholar
  34. Nair H, Allen M, Anbar A D, Yung Y L and Clancy R T 1994 A photochemical model of the Martian atmosphere; Icarus 111(1) 124–150.CrossRefGoogle Scholar
  35. Navarro T, Madeleine J-B, Forget F, Spiga A, Millour E, Montmessin F and Määttänen A 2014 Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds; J. Geophys. Res. Planets 119 1479–1495.CrossRefGoogle Scholar
  36. Novak R E, Mumma M J, DiSanti M A, DelloRusso N and Magee-Sauer K 2002 Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion; Icarus 158 14–23.CrossRefGoogle Scholar
  37. Perrier S, Bertaux J-L, Lefèvre F, Lebonnois S, Korablev O, Fedorova A and Montmessin F 2006 Global distribution of total ozone on Mars from SPICAM/MEX UV measurements; J. Geophys. Res. Planets 111(E9),  https://doi.org/10.1029/2006JE002681.
  38. Pincus R and Evans K F 2009 Computational cost and accuracy in calculating three-dimensional radiative transfer: Results for new implementations of Monte Carlo and SHDOM; J. Atmos. Sci. 66 3131–3146.CrossRefGoogle Scholar
  39. Serdyuchenko A, Gorshelev V, Weber M, Chehade W and Burrows J P 2014 High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence; Atmos. Meas. Tech. 7 625–636.CrossRefGoogle Scholar
  40. Sheel V and Haider S A 2016 Longterm variability of dust optical depths on Mars during MY24–MY32 and their impact on subtropical lower ionosphere: Climatology, modeling, and observations; J. Geophys. Res. Space Phys. 121 8038–8054,  https://doi.org/10.1002/2015JA022300.CrossRefGoogle Scholar
  41. Smith M D 2009 THEMIS observations of Mars aerosol optical depth from 2002–2008; Icarus 202 444–452,  https://doi.org/10.1016/j.icarus.2009.03.027.CrossRefGoogle Scholar
  42. Smith M D, Wolff M J, Clancy R T and Murchie S L 2009 Compact reconnaissance imaging spectrometer observations of water vapor and carbon monoxide; J. Geophys. Res. 114 E00D03,  https://doi.org/10.1029/2008JE003288.CrossRefGoogle Scholar
  43. Sneep M and Ubachs W 2005 Direct measurement of the Rayleigh scattering cross section in various gases; J. Quant. Spectrosc. Radiat. Transf. 92 293–310.CrossRefGoogle Scholar
  44. Thalman R, Zarzana K J, Tolbert M A and Volkamer R 2014 Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air; J. Quant. Spectrosc. Radiat. Transf. 147 171–177.CrossRefGoogle Scholar
  45. Willame Y, Vandaele A C, Depiesse C, Lefèvre F, Letocart V, Gillotay D and Montmessin F 2017 Retrieving cloud, dust and ozone abundances in the Martian atmosphere using SPICAM/UV nadir spectra; Planet. Space Sci. 142 9–25.CrossRefGoogle Scholar
  46. Wolff M J, Smith M D, Clancy R T, Arvidson R, Kahre M, Seelos F, Murchie S and Savijarvi H 2009 Wavelength dependence of dust aerosol single scattering albedo as observed by the compact reconnaissance imaging spectrometer; J. Geophys. Res. Planets 114(E2) E00D04.Google Scholar
  47. Wolff M J, Clancy R T, Goguen J D, Malin M C and Cantor B A 2010 Ultraviolet dust aerosol properties as observed by MARCI; Icarus 208 143–155.CrossRefGoogle Scholar
  48. Zurek R W 1978 Solar heating of the Martian dusty atmosphere; Icarus 35 196–208.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Physical Research LaboratoryAhmedabadIndia
  2. 2.Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)GuyancourtFrance

Personalised recommendations