Advertisement

Differences in natural gamma radiation characteristics of Erinpura and Malani granites in NW India

  • Lars ScharfenbergEmail author
  • Sebastian Jandausch
  • Lina Anetzberger
  • Anette Regelous
  • Kamal K Sharma
  • Helga De Wall
Article
  • 59 Downloads

Abstract

In NW India, large volumes of exposed Neoproterozoic basement rocks are formed by two magmatic suites, Erinpura granites as a late thermal event with respect to the \({\sim }\)1 Ga Delhi Orogeny and the younger Malani igneous suite (770–750 Ma). Average uranium and thorium equivalent concentrations (in ppm) inferred from spectroscopic gamma radiation survey are higher in Malani rocks (Th 47.33 ppm and U 6.95 ppm) as compared to the Erinpura granites (Th 33.55 ppm and U 4.77 ppm). These values are considerably above the granite world average (Th \(14.8 \pm 13.2\) ppm; U \(3.93 \pm 3.27\) ppm). High U (up to 19 ppm) and Th (up to 88 ppm) in some Malani granites and a constant Th–U ratio of 7 points to a high degree of fractionation of the felsic magma. Higher radioelement concentration in the east (Mirpur granite) as compared to the west (Jaswantpura granite) is substantiated by geochemical data. Areas to the west and east of the Sirohi frontal thrust show differences, most likely a consequence of anatexis in the eastern sector. A high linear correlation between inductively coupled plasma mass spectrometry and gamma-ray data underlines the suitability of in-situ measurements for the determination of U and Th concentrations during a field survey providing basic information for future petrogenetic and risk-hazard studies in this granitic terrain.

Keywords

Natural gamma radiation thorium uranium granitoids NW India 

Notes

Acknowledgements

We thank Marcel Regelous for the support with the geochemical measurements and Tom Brunclik of Georadis, Brno for the technical support with the gamma spectrometer and the hospitality during the trip to Brno in May 2018. We also thank Stefan Gleissner, Hendrik Raabe and Michel Bestmann for the support with the fieldwork in 2018, with the sample preparation and the assistance with some of the figures in this study. We also thank the two anonymous reviewers for their valuable comments and suggestions to improve the manuscript.

Supplementary material

12040_2019_1166_MOESM1_ESM.xlsx (56 kb)
Supplementary material 1 (xlsx 55 KB)

References

  1. Adams A S, Osmond J K and Rogers J J W 1959 The geochemistry of thorium and uranium; Phys. Chem. Earth 3 298–348.CrossRefGoogle Scholar
  2. Al-Jarallah M 2001 Radon exhalation from granites used in Saudi Arabia; J. Environ. Radioact. 53 91–98.CrossRefGoogle Scholar
  3. Archibald D B, Collins A S, Foden J D, Payne J L, Holden P, Razakamanana T, De Waele B, Thomas R J and Pitfield P E J 2016 Genesis of the tonian imorona–itsindro magmatic suite in central Madagascar: Insights from U–Pb, oxygen and hafnium isotopes in zircon; Precamb. Res. 281 312–337.CrossRefGoogle Scholar
  4. Arora D, Pant N, Fareeduddin, Sharma S, Ram R and Sadiq M 2017 Inferring a Neoproterozoic orogeny preceding the Rodinia break-up in the Sirohi Group, NW India; Geol. Soc. London, Spec. Publ. 457 319–338.CrossRefGoogle Scholar
  5. Artemieva I A, Thybo H, Jakobson K, Sorensen N K and Nielsen L S K 2017 Heat production in granitic rocks: Global analysis based on a new data compilations GRANITE2017; Earth-Sci. Rev. 172 1–26.CrossRefGoogle Scholar
  6. Ashwal L D, Solanki A M, Pandit M K, Corfu F, Hendriks B W H, Burke K and Torsvik T H 2013 Geochronology and geochemistry of Neoproterozoic Mt. Abu Granitoids, NW India: Regional correlation and implications for Rodinia paleogeography; Precamb. Res. 236 265–281.CrossRefGoogle Scholar
  7. Bea F, Monero P and Zinger T 2003 The nature, origin, and thermal influence of the granite source layer of Central Iberia; J. Geol. 111 579–595.CrossRefGoogle Scholar
  8. Beamish D and Busby J 2016 The Cornubian geothermal province: Heat production and flow in SW England: Estimates from boreholes and airborne gamma-ray measurements; Geoth. Energ. 4 4,  https://doi.org/10.1186/s40517-016-0046-8.CrossRefGoogle Scholar
  9. Bhushan S K 2000 Malani rhyolites – A review; Gondwana Res. 3 65–77.CrossRefGoogle Scholar
  10. Carter L 2005 Granitic and rhyolitic magmatism: Constraints on continental reconstruction from geochemistry, geochronology and paleomagnetism; Master’s Thesis, University of Johannesburg, 54p.Google Scholar
  11. Coulson A L 1933 The geology of Sirohi State, Rajputana; Geol. Soc. India Mem. LXIII, Part 1, 166p.Google Scholar
  12. Deb M, Thorpe R I, Krstic D, Corfu F and Davis D W 2001 Zircon U–Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrain constituting the western margin of the Aravalli–Delhi orogenic belt, northwestern India; Precamb. Res. 108 195–213.CrossRefGoogle Scholar
  13. de Wall H, Schöbel S, Pandit M K, Sharma K K and Just J 2010 A record of ductile syn-intrusional fabrics to post solidification cataclasis: Magnetic fabric analyses of Neoproterozoic Mirpur and Mt. Abu Granitoids, NW India; J. Geol. Soc. India 75 239–253.CrossRefGoogle Scholar
  14. de Wall H, Pandit M K, Dotzler R and Just J 2012 Cryogenian transpression and granite intrusion along the western margin of Rodinia (Mt. Abu region): Magnetic fabric and geochemical inferences on Neoproterozoic geodynamics of the NW Indian block; Tectonophys. 554–557 143–158.CrossRefGoogle Scholar
  15. de Wall H, Pandit M K, Sharma K K, Schöbel S and Just J 2014 Deformation and granite intrusion in the Sirohi area, SW Rajasthan – Constraints on Cryogenian to Pan-African crustal dynamics of NW India; Precamb. Res. 254 1–18.CrossRefGoogle Scholar
  16. de Wall H, Pandit M K, Donhauser I, Schöbel S, Wang W and Sharma K K 2018 Evolution and tectonic setting of the Malani–Nagarparkar igneous suite: A neoproterozoic silicic-dominated large igneous province in NW India-SE Pakistan; J. Asian Earth Sci. 160 136–158.CrossRefGoogle Scholar
  17. Dharma Rao C V, Santosh M and Kim S W 2012 Cryogenian volcanic arc in the NW Indian shield: Zircon SHRIMP U–Pb geochronology of felsic tuffs and implications for Gondwana assembly; Gondwana Res. 22 36–53.CrossRefGoogle Scholar
  18. Duggal V, Rani A and Mehra R 2014 Measurement of soil-gas radon in some areas of northern Rajasthan, India; J. Earth Syst. Sci. 123 1241–1247.CrossRefGoogle Scholar
  19. Eby G N and Kochhar N 1990 Geochemistry and petrogenesis of the Malani Igneous Suite, northern India; J. Geol. Soc. India 36 109–130.Google Scholar
  20. Fernàndez M, Marzán I, Correia A and Ramalho E 1998 Heat flow, heat production, and lithospheric thermal regime in the Iberian peninsula; Tectonophys. 291 29–53.CrossRefGoogle Scholar
  21. Förster A and Förster H-J 2000 Crustal composition and mantle heat flow: Implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany); J. Geophys. Res. 105 27,917–27,938.CrossRefGoogle Scholar
  22. Grasty R L and LaMarre J R 2004 The annual effective dose from natural sources of ionising radiation in Canada; Radiat. Prot. Dosim. 108 215–226.CrossRefGoogle Scholar
  23. Grasty R L, Holman P B and Blanchard Y B 1991 Transportable calibration pads for ground and airborne gamma-ray spectrometers; Geol. Surv. Canada, Paper 90-23 25p.Google Scholar
  24. Gregory L C, Meert J G, Bingen B H, Pandit M K and Torsvik T H 2009 Paleomagnetic and geochronological study of the Malani Igneous Suite, NW India: Implications for the configuration of Rodinia and the assembly of Gondwana; Precamb. Res. 170 13–26.CrossRefGoogle Scholar
  25. Gupta S N, Arora Y K, Mathur R K, Iqballaddin Prasad B, Sahai T N and Sharma S B 1997 The precambrian geology of the Aravalli Region, Southern Rajasthan and Northeastern Gujarat; Geol. Surv. Ind. Memoir. 123 262.Google Scholar
  26. Heron A M 1953 Geology of Central Rajputana; Geol. Surv. Ind. Memoir. 79 339.Google Scholar
  27. IAEA 2004 Radiation, people and the environment; International Atomic Energy Agency, Austria, 80p.Google Scholar
  28. Jan M Q, Laghari A, Agheem M H and Anjum S 2014 Geology and petrography of the Nagar Parker igneous complex, southeastern Sindh: The Dinsi body; J. Him. Earth Sci. 47 1–14.Google Scholar
  29. Jan M Q, Agheem M H, Laghari A and Anjum S 2017 Geology and petrography of the Nagar Parkar Igneous Complex, southeastern Sindh, Pakistan: The Kharsar body; J. Geol Soc. India 89 91–98.CrossRefGoogle Scholar
  30. Jaupart C and Mareschal J C 2003 Constraints on crustal heat production from heat flow data; In: Treatise on geochemistry (eds) Holland H D and Turekian K K, Vol. 4The crust (ed.) Rudnick R L, Elsevier-Pergamon, Oxford, pp. 65–84.CrossRefGoogle Scholar
  31. Just J, Schulz B, de Wall H, Jourdan F and Pandit M K 2011 Monazite CHIME/EPMA dating of granitoid deformation: Implications for neoproterozoic tectono-thermal evolution of NW India; Gondwana Res. 19 402–412.CrossRefGoogle Scholar
  32. Khan T, Maruta M, Rehman H U, Zafar M and Ozawa H 2012 Nagarparkar granites showing Rodinia remnants in the southeastern part of Pakistan; J. Asian Earth Sci. 59 39–51.CrossRefGoogle Scholar
  33. Konopelko D, Biske G, Seltmann R, Eklund O and Belyatsky B 2007 Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan; Lithos 97 140–160.CrossRefGoogle Scholar
  34. Li W X, Li X H and Li Z H 2010 Ca. 850 Ma bimodal volcanic rocks in northeastern Jiangxi Provence, South China: Initial extension during the breakup of Rodinia?; Am. J. Sci. 310 951–980.CrossRefGoogle Scholar
  35. Maden N and Akaryali E 2015 A review for genesis of continental arc magmas: U, Th, K and radiogenic heat production data from the Gümüşhane Pluton in the Eastern Pontides (NE Türkiye); Tectonophys. 664 225–243.CrossRefGoogle Scholar
  36. Maheshwari A, Garhia S S, Sial A N, Ferreira V P, Dwivedi V and Chittora V K 2002 Geology and geochemistry of granites around Jaswantpura, Jalor District, Southwestern Rajasthan, India; Gondwana Res. 5 373–379.CrossRefGoogle Scholar
  37. Marchalland C P and Fairbridge R W 1999 Encyclopedia of geochemistry; Kluwer Academic Press, Dordrecht, Boston.Google Scholar
  38. Marsac K E, Burnley P C, Adcock C T, Haber D A, Malchow R L and Hausrath E M 2016 Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona; J. Environ. Radioact. 165 68–85.CrossRefGoogle Scholar
  39. McCay A, Harley T, Younger P, Sanderson D and Cresswell A 2014 Gamma-ray spectrometry in geothermal exploration: State of the art techniques; Energies 7 4757–4780.CrossRefGoogle Scholar
  40. McLaren S, Sandiford M and Hand M 1999 High radiogenic heat-producing granites and metamorphism – An example from the western Mount Isa inlier, Australia; Geology 27(8) 679–682.CrossRefGoogle Scholar
  41. McLennan S M 2001 Relationship between the trace element composition of sedimentary rocks and upper continental crust; Geochem. Geophys. Geosyst. 2(4),  https://doi.org/10.1029/2000GC000109.CrossRefGoogle Scholar
  42. Menager M T, Heath M J, Ivanovich M, Montjotin C, Barillon C R, Camp J and Hasler S E 1993 Migration of uranium from uranium-mineralised fractures into the rock matrix in granite: Implications for radionuclide transport around a radioactive waste repository; Radiochim. Acta 66(67) 47–83.Google Scholar
  43. Menon R, Kumar P S, Reddy G K and Srinivasan R 2003 Radiogenic heat production of Late Archaean Bundelkhand granite and some Proterozoic gneisses and granitoids of central India; Curr. Sci. 85 634–638.Google Scholar
  44. Mittal S, Rani A and Mehra R 2016 Estimation of radon concentration in soil and groundwater samples of Northern Rajasthan, India; J. Radiat. Res. Appl. Sci. 9 125–130.CrossRefGoogle Scholar
  45. Mohanty A K, Sengupta D, Das S K, Saha S K and Van K V 2004 Natural radioactivity and radiation exposure in the high background area at Chhatarpur beach placer deposit of Orissa, India; J. Environ. Radioact. 75(1) 15–33.CrossRefGoogle Scholar
  46. Pareek H S 1984 Pre-Quaternary geology and mineral resources of Northwestern Rajasthan; Geol. Surv. Ind. Memoir. 115 95.Google Scholar
  47. Patra I, Srinivas D, Tripathi S, Patel A K, Ramesh Babu V, Raju B V S N and Chaturvedi K 2016 Airborne gamma-ray spectrometric data in geological mapping – A case study from parts of Shillong Basin, Meghalaya; J. Geophys. 173 173–178.Google Scholar
  48. Puccini A, Xhisha G, Cuccuru S, Oggiano G, Xhixha M, Mantovani F, Alvarez C R and Casini L 2014 Radiological characterization of granitoid outcrops and dimension stones of the Variscan Corsica-Sardinia Batholith; Environ. Earth Sci. 71 393–405.CrossRefGoogle Scholar
  49. Purohit R, Papineau D, Kröner A, Sharma K K and Roy A B 2012 Carbon isotope geochemistry and geochronological constraints of the Neoproterozoic Sirohi Group from northwest India; Precamb. Res. 220–221 80–90.CrossRefGoogle Scholar
  50. Radiation Solutions 2009 Spectrum stabilization and calibration for the RSI RS-125 and RS-230 handheld spectrometers: RSI technical note; # - RSG 703Mississauga (Radiation Solutions), Technical Note, unpublished, 6p.Google Scholar
  51. Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: A lower crustal perspective; Rev. Geophys. 33(3) 267–309.CrossRefGoogle Scholar
  52. Rudnick R L, McDonough W and O’Conell R J 1998 Thermal structure, thickness and composition of continental lithosphere; Chem. Geol. 145 395–411.CrossRefGoogle Scholar
  53. Scharfenberg L and de Wall H 2016 Natural gamma radiation of granites in the Oberpfalz (NE Bavaria, Germany)-comparison of aerogeophysical and in situ gamma spectroscopic measurements; Geol. Bl. Nordost-Bayern Angrenzende Geb. 66 205–227.Google Scholar
  54. Scharfenberg L, de Wall H, Schöbel S, Minor A, Maurer M, Pandit M K and Sharma K K 2015 In-situ gamma radiation measurements in the Neoproterozoic rocks of Sirohi region, NW India; J. Earth Syst. Sci. 124 1223–1234.CrossRefGoogle Scholar
  55. Scharfenberg L, de Wall H and Bauer W 2016 In-situ gamma radiation measurements on Variscan granites and inferred radiogenic heat production, Fichtelgebirge, Germany; Z. Dtsch. Ges. Geowiss. 167 19–32.Google Scholar
  56. Schöbel S, Sharma K K, Hörbrand T, Böhm T, Donhauser I and de Wall H 2017 Continental rift-setting and evolution of Neoproterozoic Sindreth Basin in NW-India; J. Earth Syst. Sci. 126 90,  https://doi.org/10.1007/s12040-017-0855-6.CrossRefGoogle Scholar
  57. Sharaf M, Mansy M, El Sayed A and Abbas E 1999 Natural radioactivity and radon exhalation rates in building materials used in Egypt; Radiat. Meas. 31 491–495.CrossRefGoogle Scholar
  58. Sharma K K 2004 The Neoproterozoic Malani magmatism of the northwestern Indian shield: Implications for crust-building processes; J. Earth Syst. Sci. 113 795–807.CrossRefGoogle Scholar
  59. Singh B N 2007 Petrology and geochemistry of Mt. Abu granites, southeastern Rajasthan; J. Geol. Soc. India 69 247–252.Google Scholar
  60. Singh L S and Vallinayagam G 2012 High heat producing volcano-plutonic rocks of the Siner area, Malani Igneous Suite, Western Rajasthan, India; Int. J. Geosci. 3 1137–1141.CrossRefGoogle Scholar
  61. Singh S, Singh P, Singh S, Sahoo B K, Sapra B K and Bajwa B S 2015 A study of indoor radon, thoron and their progeny measurement in Tosham region Haryana, India; J. Radiat. Res. Appl. Sci. 8 226–233.CrossRefGoogle Scholar
  62. Smethurst M A, Strand T, Sundal A V and Rudjord A L 2008 Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping; Sci. Total Environ. 407 379–393.CrossRefGoogle Scholar
  63. Solanki A 2011 A petrographic, geochemical and geochronological investigation of deformed granodiorites from SW Rajasthan: Neoproterozoic age of formation and evidence for Pan-African imprint; Masters Dissertation, University of Witwatersrand, South Africa, 216p.Google Scholar
  64. Stoulos S, Manolopoulou M and Papastefanou C 2003 Assessment of natural radiation exposure and radon exhalation from building material in Greece; J. Environ. Radioact. 69 225–240.CrossRefGoogle Scholar
  65. Taylor S R and McLennan S M 1985 The continental crust: Its evolution and composition; Rev. Geophys. 33 241–265.CrossRefGoogle Scholar
  66. Van Schmus W R 1995 Natural radioactivity of the crust and mantle; In: Global earth physics. A handbook of physical constants; AGU Reference Shelf, Vol. 1, pp. 283–293.Google Scholar
  67. Vilà M, Fernández M and Jiménez-Munt I 2010 Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling; Tectonophys. 490 152–164.CrossRefGoogle Scholar
  68. Wang Q, Wyman D A, Li Z X, Bao Z W, Zhao Z H, Wang Y X, Jiang P, Yang Y H and Chen L L 2010 Petrology, geochronology and geochemistry of ca. 780Ma A-type granites in South China: Petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia; Precamb. Res. 178 185–208.CrossRefGoogle Scholar
  69. Wang W, Pandit M K, Zhao J H, Chen W T and Zheng J P 2018 Slab break-off triggered lithosphere – Asthenosphere interaction at a convergent margin: The neoproterozoic bimodal magmatism in NW India; Lithos 296–299 281–296.CrossRefGoogle Scholar
  70. Wark D A and Miller C F 1993 Accessory mineral behavior during differentiation of a granite suite: Monazite, xenotime and zircon of the sweetwater wash pluton, southeastern California, U.S.A; Chem. Geol. 110 49–67.CrossRefGoogle Scholar
  71. Wasserburg G J 1964 Pb–U–Th evolution models for homogeneous systems with transport; Trans. Am. Geophys. Union 45(1) 111.Google Scholar
  72. Wedepohl K H 1995 The composition of the continental crust; Geochim. Cosmochim. Acta 59(7) 1217–1232.CrossRefGoogle Scholar
  73. Zhang S B and Zheng Y F 2013 Formation and evolution of Precambrian continental lithosphere in South China; Gondwana Res. 23 1241–1260.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.GeoZentrum NordbayernFriedrich-Alexander Universität ErlangenGermany
  2. 2.Piewak & Partner GmbH BayreuthGermany
  3. 3.Department of GeologyGovernment Post-Graduate CollegeSirohiIndia

Personalised recommendations