Advertisement

Seasonal variation of evapotranspiration and its effect on the surface energy budget closure at a tropical forest over north-east India

  • Pramit Kumar Deb BurmanEmail author
  • Dipankar Sarma
  • Ross Morrison
  • Anandakumar Karipot
  • Supriyo Chakraborty
Article

Abstract

This study uses 1 yr of eddy covariance (EC) flux observations to investigate seasonal variations in evapotranspiration (ET) and surface energy budget (SEB) closure at a tropical semi-deciduous forest located in north-east India. The annual cycle is divided into four seasons, namely, pre-monsoon, monsoon, post-monsoon and winter. The highest energy balance closure (76%) is observed during pre-monsoon, whereas the lowest level of closure (62%) is observed during winter. Intermediate closure of 68% and 72% is observed during the monsoon and post-monsoon seasons, respectively. Maximum latent heat flux during winter (\(\hbox {150 W m}^{-2}\)) is half of the maximum latent heat (\(\hbox {300 W m}^{-2}\)) flux during the monsoon. ET is a controlling factor of SEB closure, with the highest rates of closure corresponding to the periods of the highest ET. The Bowen ratio ranges from 0.93 in winter to 0.27 during the monsoon. This is the first time the role of ET in the seasonal variation of SEB closure has been reported for any ecosystem in north-east India using EC measurements.

Keywords

Eddy covariance Indian summer monsoon MetFlux India surface energy budget tropical forest India 

Notes

Acknowledgements

We express our sincere gratitude to the director, IITM for his constant encouragement and support. We thank all the members of the project team for all possible help. The Centre for Climate Change Research (CCCR) is part of the Indian Institute of Tropical Meteorology, Pune (IITM) and is fully supported by Earth System Science Organisation (ESSO) of the Ministry of Earth Sciences (MoES), Government of India.

References

  1. Admiral S W, Lafleur P M and Roulet N T 2006 Controls on latent heat flux and energy partitioning at a peat bog in eastern Canada; Agric. For. Meteorol. 140 308–321,  https://doi.org/10.1016/j.agrformet.2006.03.017.CrossRefGoogle Scholar
  2. Anderson M C, Norman J M, Meyers T P and Diak G R 2000 An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency; Agric. For. Meteorol. 101 265–289,  https://doi.org/10.1016/S0168-1923(99)00170-7.CrossRefGoogle Scholar
  3. Anthoni P M, Unsworth M H, Law B E, Irvine J, Baldocchi D D, Van Tuyl S and Moore D 2002 Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems; Agric. For. Meteorol. 111 203–222,  https://doi.org/10.1016/S0168-1923(02)00021-7.CrossRefGoogle Scholar
  4. Aubinet M, Vesala T and Papale D 2012 Eddy covariance: A practical guide to measurement and data analysis; Springer, New York,  https://doi.org/10.1007/978-94-007-2351-1.CrossRefGoogle Scholar
  5. Baldocchi D 2014 Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state and future of the eddy covariance method; Global Chang. Biol. 20 3600–3609,  https://doi.org/10.1111/gcb.12649.CrossRefGoogle Scholar
  6. Baldocchi D, Falge E, Gu L and Olson R et al. 2001 FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities; Bull. Am. Meteorol. Soc. 82, 2415,  https://doi.org/10.1175/1520-0477(2001)082%3C;2415:FANTTS%3E;2.3.CO;2.
  7. Bhat G S and Arunchandra S C 2009 On the measurement of the surface energy budget over a land surface during the summer monsoon; J. Earth Syst. Sci. 117 911–923,  https://doi.org/10.1007/s12040-008-0076-0.CrossRefGoogle Scholar
  8. Bhat G S and Narasimha R 2007 Indian summer monsoon experiments; Curr. Sci. 93 153–164.Google Scholar
  9. Bovard B D, Curtis P S, Vogel C S, Su H-B and Schmid H P 2005 Environmental controls on sap flow in a northern hardwood forest; Tree Physiol. 25 31–38,  https://doi.org/10.1093/treephys/25.1.31.CrossRefGoogle Scholar
  10. Bréda N J J 2003 Ground-based measurements of leaf area index: A review of methods, instruments and current controversies; J. Exp. Bot. 54 2403–2417,  https://doi.org/10.1093/jxb/erg263.CrossRefGoogle Scholar
  11. Brümmer C, Falk U, Papen H, Szarzynski J, Wassmann R and Brüggemann N 2008 Diurnal, seasonal, and interannual variation in carbon dioxide and energy exchange in shrub savanna in Burkina Faso (West Africa); J. Geophys. Res. Atmos. 113,  https://doi.org/10.1029/2007JG000583.CrossRefGoogle Scholar
  12. Burba G 2013 Eddy covariance method for scientific, industrial, agricultural and regulatory applications: A field book on measuring ecosystem gas exchange and areal emission rates; LI-Cor Biosciences, Lincoln, NE, 331p.Google Scholar
  13. Caird M A, Richards J H and Donovan L A 2007 Nighttime stomatal conductance and transpiration in C3 and C4 plants; Plant Physiol. 143 4–10,  https://doi.org/10.1104/pp.106.092940 CrossRefGoogle Scholar
  14. Chatterjee A, Roy A, Chakraborty S, Karipot A K, Sarkar C, Singh S, Ghosh S K, Mitra A and Raha S 2018 Biosphere atmosphere exchange of \(\text{ CO }_2\), \(\text{ H }_2\text{ O }\) vapour and energy during spring over a high altitude Himalayan Forest at Eastern India; Aerosol. Air Qual. Res.,  https://doi.org/10.4209/aaqr.2017.12.0605.CrossRefGoogle Scholar
  15. Cho J, Oki T, Yeh P J-F, Kim W, Kanae S and Otsuki K 2012 On the relationship between the Bowen ratio and the near-surface air temperature; Theor. Appl. Climatol. 108 135–145,  https://doi.org/10.1007/s00704-011-0520-y.CrossRefGoogle Scholar
  16. Daughtry C S T, Kustas W P, Moran M S, Pinter P J, Jackson R D, Brown P W, Nichols W D and Gay L W 1990 Spectral estimates of net radiation and soil heat flux; Remote Sens. Environ. 32 111–124,  https://doi.org/10.1016/0034-4257(90)90012-B.CrossRefGoogle Scholar
  17. Dawson T E, Burgess S S O, Tu K P, Oliveira R S, Santiago L S, Fisher J B, Simonin K A and Ambrose A R 2007 Night-time transpiration in woody plants from contrasting ecosystems; Tree Physiol. 27 561–575,  https://doi.org/10.1093/treephys/27.4.561.CrossRefGoogle Scholar
  18. Deb Burman P K, Sarma D, Williams M, Karipot A and Chakraborty S 2017 Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables; J. Earth Syst. Sci. 126 1–16,  https://doi.org/10.1007/s12040-017-0874-3.CrossRefGoogle Scholar
  19. de Silans A P, Monteny B A and Lhomme J P 1997 The correction of soil heat flux measurements to derive an accurate surface energy balance by the Bowen ratio method; J. Hydrol. 188 453–465,  https://doi.org/10.1016/S0022-1694(96)03187-3.CrossRefGoogle Scholar
  20. Dirmeyer P A, Gao X, Zhao M, Guo Z, Oki T and Hanasaki N 2006 GSWP-2: Multimodel analysis and implications for our perception of the land surface; Bull. Am. Meteorol. Soc. 87 1381–1397,  https://doi.org/10.1175/BAMS-87-10-1381.CrossRefGoogle Scholar
  21. Dugas W A, Fritschen L J, Gay L W, Held A A, Matthias A D, Reicosky D C, Steduto P and Steiner J L 1991 Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat; Agric. For. Meteorol. 56 1–20,  https://doi.org/10.1016/0168-1923(91)90101-U.CrossRefGoogle Scholar
  22. Eamus D, Hutley L B and O’Grady A P 2001 Daily and seasonal patterns of carbon and water fluxes above a north Australian savanna; Tree Physiol. 21 977–988,  https://doi.org/10.1093/treephys/21.12-13.977.CrossRefGoogle Scholar
  23. Finkelstein P L and Sims P F 2001 Sampling error in eddy correlation flux measurements; J. Geophys. Res.,  https://doi.org/10.1029/2000JD900731.CrossRefGoogle Scholar
  24. Fisher J B, Baldocchi D D, Misson L, Dawson T E and Goldstein A H 2007 What the towers don’t see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California; Tree Physiol. 27 597–610,  https://doi.org/10.1093/treephys/27.4.597.CrossRefGoogle Scholar
  25. Fisher R A, Williams M, de Lourdes Ruivo M, de Costa A L and Meir P 2008 Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites; Agric. For. Meteorol. 148 850–861,  https://doi.org/10.1016/j.agrformet.2007.12.001.CrossRefGoogle Scholar
  26. Fisher J B, Malhi Y, Bonal D, Da Rocha H R, De Araujo A C, Gamo M, Goulden M L, Hirano T, Huete A R and Kondo H, et al. 2009 The land–atmosphere water flux in the tropics; Glob. Chang. Biol. 15 2694–2714,  https://doi.org/10.1111/j.1365-2486.2008.01813.x.CrossRefGoogle Scholar
  27. Foken T, Göockede M, Mauder M, Mahrt L, Amiro B and Munger W 2004 Post-field data quality control; In: Handbook of micrometeorology. Atmospheric and oceanographic sciences library (eds) Lee X, Massman W, Law B, Vol. 29, Springer, Dordrecht,  https://doi.org/10.1007/1-4020-2265-4_9.
  28. Foken T, Aubinet M, Finnigan J J, Leclerc M Y, Mauder M and Kyaw Tha Paw U 2011 Results of a panel discussion about the energy balance closure correction for trace gases; Bull. Am. Meteorol. Soc. 92 ES13–ES18,  https://doi.org/10.1175/2011BAMS3130.1.CrossRefGoogle Scholar
  29. Frolking S E et al. 1998 The relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands; Global Biogeochem. Cycles 12 115–126.CrossRefGoogle Scholar
  30. Gadgil S and Gadgil S 2006 The Indian monsoon, GDP and agriculture; Econ. Polit. Wkly. 41 4887–4895,  https://doi.org/10.2307/4418949.CrossRefGoogle Scholar
  31. Giambelluca T W, Martin R E, Asner G P, Huang M, Mudd R G, Nullet M A, DeLay J K and Foote D 2009 Evapotranspiration and energy balance of native wet montane cloud forest in Hawai‘i; Agric. For. Meteorol. 149 230–243,  https://doi.org/10.1016/j.agrformet.2008.08.004.CrossRefGoogle Scholar
  32. Gnanamoorthy P, Selvam V, Ramasubramanian R, Nagarajan R, Chakraborty S, Deb Burman P K and Karipot A 2019 Diurnal and seasonal patterns of soil CO\(_2\) efflux from the Pichavaram mangroves, India; Environ. Monit. Assess. 191 1–12.  https://doi.org/10.1007/s10661-019-7407-2.CrossRefGoogle Scholar
  33. Goldstein A H, Hultman N E, Fracheboud J M, Bauer M R, Panek J A, Xu M, Qi Y, Guenther A B and Baugh W 2000 Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA); Agric. For. Meteorol. 101 113–129,  https://doi.org/10.1016/S0168-1923(99)00168-9.CrossRefGoogle Scholar
  34. Goswami B N and Ajayamohan R S 2001 Intraseasonal oscillations and interannual variability of the Indian summer monsoon; J. Clim. 14 1180–1198,  https://doi.org/10.1175/1520-0442(2001)014%3C;1180:IOAIVO%3E;2.0.CO;2.
  35. Greco S and Baldocchi D D 1996 Seasonal variations of \(\text{ CO }_2\) and water vapour exchange rates over a temperate deciduous forest; Glob. Chang. Biol. 2 183–197,  https://doi.org/10.1111/j.1365-2486.1996.tb00071.x.CrossRefGoogle Scholar
  36. Gu S, Tang Y, Cui X, Kato T, Du M, Li Y and Zhao X 2005 Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai–Tibetan Plateau; Agric. For. Meteorol. 129 175–185,  https://doi.org/10.1016/j.agrformet.2004.12.002.CrossRefGoogle Scholar
  37. Gu L, Meyers T, Pallardy S G, Hanson P J, Yang B, Heuer M, Hosman K P, Riggs J S, Sluss D and Wullschleger S D 2006 Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site; J. Geophys. Res. Atmos. 111, 1–13,  https://doi.org/10.1029/2006JD007161.CrossRefGoogle Scholar
  38. Gyenge J E, Fernández M E and Schlichter T M 2003 Water relations of ponderosa pines in Patagonia Argentina: Implications for local water resources and individual growth; Trees-structure Funct. 17 417–423,  https://doi.org/10.1007/s00468-003-0254-2.
  39. Heusinkveld B G, Jacobs A F G, Holtslag A A M and Berkowicz S M 2004 Surface energy balance closure in an arid region: Role of soil heat flux; Agric. For. Meteorol. 122 21–37,  https://doi.org/10.1016/j.agrformet.2003.09.005.CrossRefGoogle Scholar
  40. Hingane L S, Rupa Kumar K and Ramana Murty B V 1985. Long-term trends of surface air temperature in India; J. Climatol. 5 521–528,  https://doi.org/10.1002/joc.3370050505.CrossRefGoogle Scholar
  41. Hogg E H and Hurdle P A 1997 Sap flow in trembling aspen: Implications for stomatal responses to vapor pressure deficit; Tree Physiol. 17 501–509,  https://doi.org/10.1093/treephys/17.8-9.501.CrossRefGoogle Scholar
  42. Idso S B, Aase J K and Jackson R D 1975 Net radiation – Soil heat flux relations as influenced by soil water content variations; Bound.-Layer Meteorol. 9 113–122,  https://doi.org/10.1007/BF00232257.CrossRefGoogle Scholar
  43. Jain S K and Kumar V 2012 Trend analysis of rainfall and temperature data for India; Curr. Sci. 102 37–49.Google Scholar
  44. Jarvis P G, Massheder J M, Hale S E, Moncrieff J B, Rayment M and Scott S L 1997 Seasonal variation of carbon dioxide, water vapor, and energy exchanges of a boreal black spruce forest; J. Geophys. Res. Atmos. 102 28953–28966,  https://doi.org/10.1029/97JD01176.CrossRefGoogle Scholar
  45. Jasechko S, Sharp Z D, Gibson J J, Birks S J, Yi Y and Fawcett P J 2013 Terrestrial water fluxes dominated by transpiration; Nature 496 347–350,  https://doi.org/10.1038/nature11983.CrossRefGoogle Scholar
  46. Jha C S, Thumaty K C, Rodda S R, Sonakia A and Dadhwal V K 2013 Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique; J. Earth Syst. Sci. 122 1259–1268,  https://doi.org/10.1007/s12040-013-0350-7.CrossRefGoogle Scholar
  47. Jhajharia D, Shrivastava S K, Sarkar D and Sarkar S 2009 Temporal characteristics of pan evaporation trends under the humid conditions of northeast India; Agric. For. Meteorol. 149 763–770,  https://doi.org/10.1016/j.agrformet.2008.10.024.CrossRefGoogle Scholar
  48. Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D and Chen J et al. 2011 Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations; J. Geophys. Res. Biogeosci. 116,  https://doi.org/10.1029/2010JG001566.
  49. Kaimal J C and Finnigan J J 1994 Atmospheric boundary layer flows: Their structure and measurement; Oxford University Press.Google Scholar
  50. Kool D, Agam N, Lazarovitch N, Heitman J L, Sauer T J and Ben-Gal A 2014 A review of approaches for evapotranspiration partitioning; Agric. For. Meteorol. 184 56–70,  https://doi.org/10.1016/j.agrformet.2013.09.003.CrossRefGoogle Scholar
  51. Kottek M, Grieser J, Beck C, Rudolf B and Rubel F 2006 World map of the Köppen-Geiger climate classification updated; Meteorol. Zeitschrift 15 259–263,  https://doi.org/10.1127/0941-2948/2006/0130.CrossRefGoogle Scholar
  52. Kustas W P and Daughtry C S T 1990 Estimation of the soil heat flux/net radiation ratio from spectral data; Agric. For. Meteorol. 49 205–223,  https://doi.org/10.1016/0168-1923(90)90033-3.CrossRefGoogle Scholar
  53. Kustas W P, Daughtry C S T and Van Oevelen P J 1993 Analytical treatment of the relationships between soil heat flux/net radiation ratio and vegetation indices; Remote Sens. Environ. 46 319–330,  https://doi.org/10.1016/0034-4257(93)90052-Y.CrossRefGoogle Scholar
  54. Lawrence D M, Thornton P E, Oleson K W and Bonan G B 2007 The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land–atmosphere interaction; J. Hydrometeorol. 8 862–880,  https://doi.org/10.1175/JHM596.1.CrossRefGoogle Scholar
  55. Leuning R, Van Gorsel E, Massman W J and Isaac P R 2012 Reflections on the surface energy imbalance problem; Agric. For. Meteorol. 156 65–74,  https://doi.org/10.1016/j.agrformet.2011.12.002.CrossRefGoogle Scholar
  56. Malek E and Bingham G E 1993 Comparison of the Bowen ratio-energy balance and the water balance methods for the measurement of evapotranspiration; J. Hydrol. 146 209–220,  https://doi.org/10.1016/0022-1694(93)90276-F.CrossRefGoogle Scholar
  57. Mauder M and Foken T 2006 Impact of post-field data processing on eddy covariance flux estimates and energy balance closure; Meteorol. Zeitschrift 15 597–609,  https://doi.org/10.1127/0941-2948/2006/0167.CrossRefGoogle Scholar
  58. Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid H P, Schmidt M and Steinbrecher R 2013 A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements; Agric. For. Meteorol. 169 122–135,  https://doi.org/10.1016/j.agrformet.2012.09.006.CrossRefGoogle Scholar
  59. Moffat A M, Papale D, Reichstein M, Hollinger D Y, Richardson A D, Barr A G, Beckstein C, Braswell B H, Churkina G and Desai A R, et al. 2007 Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes; Agric. For. Meteorol. 147 209–232,  https://doi.org/10.1016/j.agrformet.2007.08.011.CrossRefGoogle Scholar
  60. Moncrieff J B, Massheder J M, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H and Verhoef A 1997 A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide; J. Hydrol. 188–189 589–611,  https://doi.org/10.1016/S0022-1694(96)03194-0.CrossRefGoogle Scholar
  61. Moncrieff J, Clement R, Finnigan J and Meyers T 2004 Averaging, detrending, and filtering of eddy covariance time series; In: Handbook of micrometeorology. Atmospheric and oceanographic sciences library (eds) Lee X, Massman W, Law B, Vol 29, Springer, Dordrecht,  https://doi.org/10.1007/1-4020-2265-4_2
  62. Monteith J L 1965 Evaporation and the environment; In: The state and movement of water in living organisms (ed.) Fogg G E, Symposium of the Society of Experimental Biology, Vol. 19, Cambridge University Press, London.Google Scholar
  63. Mukhopadhyay P, Jaswal A and Deshpande M 2017 Variability and trends of atmospheric moisture over the Indian region; In: Observed climate variability and change over the Indian region (eds) Rajeevan M and Nayak S, Springer, Singapore, pp. 129–144,  https://doi.org/10.1007/978-981-10-2531-0_8.Google Scholar
  64. Nakai T, der Molen M K, Gash J H C and Kodama Y 2006 Correction of sonic anemometer angle of attack errors; Agric. For. Meteorol. 136 19–30,  https://doi.org/10.1016/j.agrformet.2006.01.006.CrossRefGoogle Scholar
  65. Norman J M, Kustas W P, Prueger J H and Diak G R 2000 Surface flux estimation using radiometric temperature: A dual temperature-difference method to minimize measurement errors; Water Resour. Res. 36 2263–2274,  https://doi.org/10.1029/2000wr900033.CrossRefGoogle Scholar
  66. Novick K A, Oren R, Stoy P C, Siqueira M B S and Katul G G 2009 Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern US: Implications for annual fluxes; Agric. For. Meteorol. 149 1491–1504,  https://doi.org/10.1016/j.agrformet.2009.04.005.CrossRefGoogle Scholar
  67. Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R and Vesala T, et al. 2006 Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation; Biogeosciences 3 571–583,  https://doi.org/10.5194/bg-3-571-2006.CrossRefGoogle Scholar
  68. Parthasarathy B, Rupa Kumar K and Sontakke N A 1990 Surface and upper air temperatures over India in relation to monsoon rainfall; Theor. Appl. Climatol. 42 93–110,  https://doi.org/10.1007/BF00868216.CrossRefGoogle Scholar
  69. Parthasarathy B, Munot A A and Kothawale D R 1994 All-India monthly and seasonal rainfall series: 1871–1993; Theor. Appl. Climatol. 49 217–224,  https://doi.org/10.1007/BF00867461.CrossRefGoogle Scholar
  70. Pejam M R, Arain M A and McCaughey J H 2006 Energy and water vapour exchanges over a mixed wood boreal forest in Ontario, Canada; Hydrol. Process. 20 3709–3724,  https://doi.org/10.1002/hyp.6384.CrossRefGoogle Scholar
  71. Pieruschka R, Huber G and Berry J A 2010 Control of transpiration by radiation; Proc. Natl. Acad. Sci. 107 13372–13377,  https://doi.org/10.1073/pnas.0913177107.CrossRefGoogle Scholar
  72. Purdy A J, Fisher J B, Goulden M L and Famiglietti J S 2016 Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally; J. Geophys. Res. Biogeosci. 121 3045–3059,  https://doi.org/10.1002/2016JG003591.CrossRefGoogle Scholar
  73. Ramana M V, Krishnan P and Kunhikrishnan P K 2004 Surface boundary-layer characteristics over a tropical inland station: Seasonal features; Boundary-Layer Meteorol. 111 153–175.  https://doi.org/10.1023/B:BOUN.0000010999.25921.1a CrossRefGoogle Scholar
  74. Ramier D, Boulain N, Cappelaere B, Timouk F, Rabanit M, Lloyd C R, Boubkraoui S, Métayer F, Descroix L and Wawrzyniak V 2009 Towards an understanding of coupled physical and biological processes in the cultivated Sahel–1. Energy Water; J. Hydrol. 375 204–216,  https://doi.org/10.1016/j.jhydrol.2008.12.002.CrossRefGoogle Scholar
  75. Randerson J T, Chapin F S, Harden J W, Neff J C and Harmon M E 2002 Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems; Ecol. Appl. 12 937–947,  https://doi.org/10.1890/1051-0761(2002)012[0937:NEPACM]2.0.CO;2.CrossRefGoogle Scholar
  76. Reddy N N and Rao K G 2018 Contrasting variations in the surface layer structure between the convective and non-convective periods in the summer monsoon season for Bangalore location during PRWONAM; J. Atmos. Sol.-Terr. Phys. 167 156–168,  https://doi.org/10.1016/j.jastp.2017.11.017.CrossRefGoogle Scholar
  77. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T and Granier A, et al. 2005 On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm; Glob. Chang. Biol. 11 1424–1439,  https://doi.org/10.1111/j.1365-2486.2005.001002.x.CrossRefGoogle Scholar
  78. Reverter B R, Sánchez-Cañete E P, Resco V, Serrano-Ortiz P, Oyonarte C and Kowalski A S 2010 Analyzing the major drivers of NEE in a Mediterranean alpine shrubland; Biogeosciences 7 2601–2611,  https://doi.org/10.5194/bg-7-2601-2010.CrossRefGoogle Scholar
  79. Rodda S R, Thumaty K C, Jha C S and Dadhwal V K 2016 Seasonal variations of carbon dioxide, water vapor and energy fluxes in Tropical Indian Mangroves; Forests 7 35,  https://doi.org/10.3390/f7020035.CrossRefGoogle Scholar
  80. Rothfuss Y, Biron P, Braud I, Canale L, Durand J, Gaudet J, Richard P, Vauclin M and Bariac T 2010 Partitioning of evapotranspiration into soil evaporation and plant partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions; Hydrol. Process. 24 3177–3194,  https://doi.org/10.1002/hyp.7743.CrossRefGoogle Scholar
  81. Sachs L 1997 Angewandte statistik: Anwendung statistischer methoden; Springer, Berlin.CrossRefGoogle Scholar
  82. Sakai R K, Fitzjarrald D R and Moore K E 2001 Importance of low-frequency contributions to eddy fluxes observed over rough surfaces; J. Appl. Meteorol. 40 2178–2192.CrossRefGoogle Scholar
  83. Sauer T J, Ochsner T E and Horton R 2007 Soil heat flux plates; Agron. J. 99 304–310,  https://doi.org/10.2134/agronj2005.0038s.CrossRefGoogle Scholar
  84. Scott R L, Edwards E A, Shuttleworth W J, Huxman T E, Watts C and Goodrich D C 2004 Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem; Agric. For. Meteorol. 122 65–84,  https://doi.org/10.1016/j.agrformet.2003.09.001.CrossRefGoogle Scholar
  85. Sellers P J 1987 Canopy reflectance, photosynthesis, and transpiration, II; The role of biophysics in the linearity of their interdependence; Remote Sens. Environ. 21 143–183,  https://doi.org/10.1016/0034-4257(87)90051-4.CrossRefGoogle Scholar
  86. Shi T-T, Guan D-X, Wu J-B, Wang A-Z, Jin C-J and Han S-J 2008 Comparison of methods for estimating evapotranspiration rate of dry forest canopy: Eddy covariance, Bowen ratio energy balance, and Penman-Monteith equation; J. Geophys. Res. Atmos. 113,  https://doi.org/10.1029/2008JD010174.
  87. Shuttleworth W J 2007 Putting the “vap” into evaporation; Hydrol. Earth Syst. Sci. 11 210–244,  https://doi.org/10.5194/hess-11-210-2007.CrossRefGoogle Scholar
  88. Si J-H, Feng Q, Zhang X-Y, Chang Z-Q, Su Y-H and Xi H 2007 Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season; J. Integr. Plant Biol. 49, 425–436,  https://doi.org/10.1111/j.1744-7909.2007.00388.x.CrossRefGoogle Scholar
  89. Sikka D R and Narasimha R 1995 Genesis of the monsoon trough boundary layer experiment (MONTBLEX); Planet. Sci. (Earth Planet. Sci.) 104 157–187,  https://doi.org/10.1007/BF02839270.CrossRefGoogle Scholar
  90. Singh O P, Ali Khan T M and Rahman M S 2000 Changes in the frequency of tropical cyclones over the North Indian Ocean; Meteorol. Atmos. Phys. 75 11–20,  https://doi.org/10.1007/s007030070011.CrossRefGoogle Scholar
  91. Stull R B 2012 An introduction to boundary layer meteorology; Vol. 13, Springer, Dordrecht,  https://doi.org/10.1007/978-94-009-3027-8.Google Scholar
  92. Tanner C 1960 Energy balance approach to evapotranspiration from crops; Soil Sci. Soc. Am. J. 24 1–9,  https://doi.org/10.2136/sssaj1960.03615995002400010012x.CrossRefGoogle Scholar
  93. Tsai J-L, Tsuang B-J, Lu P-S, Chang K-H, Yao M-H and Shen Y 2010 Measurements of aerodynamic roughness, Bowen ratio, and atmospheric surface layer height by eddy covariance and tethersonde systems simultaneously over a heterogeneous rice paddy; J. Hydrometeorol. 11 452–466.  https://doi.org/10.1175/2009JHM1131.1.CrossRefGoogle Scholar
  94. Twine T E, Kustas W P, Norman J M, Cook D R, Houser P, Meyers T P, Prueger J H, Starks P J and Wesely M L 2000 Correcting eddy-covariance flux underestimates over a grassland; Agric. For. Meteorol. 103 279–300,  https://doi.org/10.1016/S0168-1923(00)00123-4.CrossRefGoogle Scholar
  95. Vernekar K G, Sadani L K, Sivaramakrishnan S, Parasnis S S, Mohan B, Saxena S, Dharmaraj T, Patil M N, Pillai J S, Murthy B S, Debaje S B and Bagavathsingh A 2003 An overview of the land surface processes experiment (LASPEX) over a semi-arid region of India; Bound.-Layer Meteorol. 106(3) 561–572,  https://doi.org/10.1023/A:1021283503661.CrossRefGoogle Scholar
  96. Wang B 2006 The Asian monsoon; Springer, Heidelberg,  https://doi.org/10.1007/3-540-37722-0.CrossRefGoogle Scholar
  97. Wang K and Dickinson R E 2012 A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability; Rev. Geophys. 50, 1–54,  https://doi.org/10.1029/2011RG000373.CrossRefGoogle Scholar
  98. Wang B and Ho L 2002 Rainy season of the Asian-Pacific summer monsoon; J. Clim. 15 386–398,  https://doi.org/10.1175/1520-0442(2002)015%3C;0386:RSOTAP%3E;2.0.CO;2.
  99. Wang J, Yu Q, Li J, Li L-H, Li X-G, Yu G-R and Sun X-M 2006 Simulation of diurnal variations of \(\text{ CO }_{2}\), water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration; Agric. For. Meteorol. 137 194–219,  https://doi.org/10.1016/j.agrformet.2006.02.007.CrossRefGoogle Scholar
  100. Watham T, Kushwaha S P, Patel N R and Dadhwal V K 2014 Monitoring of carbon dioxide and water vapour exchange over a young mixed forest plantation using eddy covariance technique; Curr. Sci. 107 858–866.Google Scholar
  101. Webb E K, Pearman G I and Leuning R 1980 Correction of flux measurements for density effects due to heat and water vapour transfer; Quart. J. Roy. Meteorol. Soc. 106 85–100,  https://doi.org/10.1002/qj.49710644707.CrossRefGoogle Scholar
  102. Wilson K B and Baldocchi D D 2000 Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America; Agric. For. Meteorol. 100 1–18,  https://doi.org/10.1016/S0168-1923(99)00088-X.CrossRefGoogle Scholar
  103. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H and Field C, et al. 2002 Energy balance closure at FLUXNET sites; Agric. For. Meteorol. 113 223–243,  https://doi.org/10.1016/S0168-1923(02)00109-0.CrossRefGoogle Scholar
  104. Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O and Reichstein M 2018 Basic and extensible post-processing of eddy covariance flux data with REddyProc; Biogeosci. Discuss. 15 1–39,  https://doi.org/10.5194/bg-2018-56.CrossRefGoogle Scholar
  105. Xavier P K, Marzin C and Goswami B N 2007 An objective definition of the Indian summer monsoon season and a new perspective on the ENSO-monsoon relationship; Quart. J. Roy. Meteorol. Soc. 133 749–764,  https://doi.org/10.1002/qj.45.CrossRefGoogle Scholar
  106. Yang K and Wang J 2008 A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data; Sci. China Ser. D Earth Sci. 51 721–729,  https://doi.org/10.1007/s11430-008-0036-1.CrossRefGoogle Scholar
  107. Yaseef N R, Yakir D, Rotenberg E, Schiller G and Cohen S 2010 Ecohydrology of a semi-arid forest: Partitioning among water balance components and its implications for predicted precipitation changes; Ecohydrology 3 143–154,  https://doi.org/10.1002/eco.65.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Centre for Climate Change ResearchIndian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of Atmospheric and Space SciencesSavitribai Phule Pune UniversityPuneIndia
  3. 3.Department of Environmental SciencesTezpur UniversityTezpurIndia
  4. 4.Land Surface Science, Hydro-Climate RisksNERC Centre for Ecology and HydrologyWallingfordUK

Personalised recommendations