Advertisement

Estimation of coda Q for the eastern Indian craton

  • Koushik BiswasEmail author
  • Prantik Mandal
  • Prosanta Kumar Khan
Article

Abstract

We herein present new frequency-dependent coda-\(Q\,\,(Q_\mathrm{c})\) relations (\(Q_\mathrm{c} =Q_{\text {0}}f ^{n})\) (frequency ranges between 2 and 18 Hz) for three regions of the eastern Indian craton (EIC), viz., the Singhbhum Odisha craton (SOC) and the Eastern Ghat mobile belt (EGMB), comprising the Mahanadi basin and the Chotanagpur granitic gneissic terrain (CGGT). The frequency-dependent coda-\(Q_\mathrm{c}\) relations are obtained through the single backscattering model for coda waves (\(Q_\mathrm{c})\) of local earthquakes which are recorded on 15 three-component broadband seismograph stations in the regions. In this work, we pay special attention to test the lapse time (\(t_\mathrm{L})\) dependency of coda-Q (\(Q_\mathrm{c})\) estimates for the three regions. Lapse time signifies the sample area of the coda wave of the study region. Generally, the sample area increases with lapse time. To test the lapse time (\(t_\mathrm{L})\) dependency, nine different lapse time windows (\(t_\mathrm{L})\) from 10 to 90 s with 10 s interval are considered. On the ground of estimated poor correlation coefficients, only six lapse time windows (\(t_\mathrm{L})\) from 40 to 90 s with 10 s interval are considered. Our results suggest more heterogeneity in EGMB than that of the SOC and CGGT region. Estimates of \(Q_{\text {0}}\) and n for the three regions of EIC (SOC, EGMB and CGGT) are found to be consistent with the results of \(Q_{\text {0}}\) and n for mildly active less heterogeneous seismic zones in different parts of the world. By assuming entirely intrinsic attenuation characteristics, actual hazard parameters, i.e., extinction distance and anelastic attenuation coefficients are also computed for the three regions. The extinction distance (\(L_\mathrm{e})\) provides an idea of the distribution of scatterers in the lithosphere and anelastic attenuation coefficients signify the anelasticity of the medium, i.e., fluid movement and grain distribution. The estimate of extinction distance and attenuation coefficients suggests that for all three study regions, the upper mantle is relatively less heterogeneous and attenuation below 110–126 km depth is also comparatively lower. Coda Q indicates the degree of fracture and heterogeneity in the lithosphere related to seismicity. A higher estimate of \(Q_{\text {0}}\) values in the Archaean SOC region and the Proterozoic CGGT region is found when compared with that of the sedimentary-rich EGMB. It can be inferred that seismically less active cratons in general comprise high \(Q_{\text {0}}\) values, whereas the sedimentary-rich EGMB is more attenuative, characterised by a low coda \(Q_{\text {0}}\) value. Moreover, it is found that the estimated \(Q_{\text {0}}\) values for CGGT region are a little bit higher than that for the SOC region. This can be explained as a comparatively less disturbed and less heterogonous land mass that is present in the CGGT region as compared to the SOC region, which comprises different minerals, ore bodies, fault scarps and shear zones. The developed \(Q_\mathrm{c}\) relation for the EIC region could be useful for the study of hazards and ground motion prediction.

Keywords

Attenuation Q-value lapse times eastern Indian craton 

Notes

Acknowledgements

The authors are grateful to the director, NGRI, Hyderabad, for his kind permission to publish this work. This study was supported by the Council of Scientific and Industrial Research (CSIR) twelfth five-year plan project (INDEX) at the CSIR–National Geophysical Research Institute, Hyderabad.

References

  1. Acharya S 1984 Stratigraphic and structural evolution of the rocks of the iron ore basins in Singhbhum–Orissa Iron Ore Province, India; CEISM Semin., Ind. J. Earth Sci. 1 19–28.Google Scholar
  2. Acharyya S K, Gupta A and Orihashi Y 2010a New U-Pb zircon ages from Palaeo–Mesoarchaean TTG gneisses of the Singhbhum Craton, eastern India; Geochem. J. 44 81–88.Google Scholar
  3. Acharyya S K, Gupta A and Orihashi Y 2010b Neoarchaean–Palaeoproterozoic stratigraphy of the Dhanjori basin, Singhbhum craton, Eastern India: And recording of a few U–Pb zircon dates from its basal part; J. Asian Earth Sci. 39 527–536.CrossRefGoogle Scholar
  4. Aki K 1969 Analysis of the seismic coda of local earthquakes as scattered waves; J. Geophys. 74 615–631.CrossRefGoogle Scholar
  5. Aki K 1980a Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz; Phys. Earth Planet. Inter. 21 50–60.CrossRefGoogle Scholar
  6. Aki K 1980b Scattering and attenuation of shear waves in the lithosphere; J. Geophys. Res. 85 6496–6504.CrossRefGoogle Scholar
  7. Aki K 1981 Attenuation of short-period seismic waves in lithosphere; In: Proceedings of the Nato Advanced Institute, August 1980, Oslo, Norway.Google Scholar
  8. Aki K and Chouet B 1975 Origin of Coda waves: Source, attenuation and scattering effects; J. Geophys. Res. 80 3322–3342.CrossRefGoogle Scholar
  9. Aleqabi G I and Wysession M E 2006 \(QLg\) distribution in the Basin and Range Province of the western United States; Bull. Seismol. Soc. Am. 96 348–354.CrossRefGoogle Scholar
  10. Allen T I, Cummins P R, Dhu T and Schneider J F 2007 Attenuation of ground-motion spectral amplitudes in southeastern Australia; Bull. Seismol. Soc. Am. 97 1279–1292.CrossRefGoogle Scholar
  11. Barros L V, Assumpco M, Quintero R and Ferreira V M 2011 Coda wave attenuation in the Parecis Basin, Amazon Craton, Brazil: Sensitivity to basement depth; J. Seismol. 15 391–409.CrossRefGoogle Scholar
  12. Biswas K and Mandal P 2017 Modeling of source parameters and moment tensors of local earthquakes occurring in the Eastern Indian Shield; J. Geol. Soc. India 89 619–630,  https://doi.org/10.1007/s12594-017-0671-2.CrossRefGoogle Scholar
  13. Biswas K, Kumar M and Mandal P 2016 Lapse time dependent coda-Q (\(Q_{c})\) in the Kachchh, rift zone, Gujarat, India; Nat. Hazards 81 1589–1610,  https://doi.org/10.1007/s11069-016-2147-x.CrossRefGoogle Scholar
  14. Chandra U 1977 Earthquakes of Peninsular India – A seismotectonic study; Bull. Seismol. Soc. Am. 67(5) 1387–1413.Google Scholar
  15. Chetty T R K and Murthy D S N 1994 Regional tectonic framework of the Eastern Ghats Mobile Belt: A new interpretation; In: Proceedings of the workshop on Eastern Ghat Mobile Belt, Geol. Surv. Ind. 44 39–50.Google Scholar
  16. Chung J, Chen Y and Shin T 2009 Spatial distribution of coda \(Q\) estimated from local earthquakes in Taiwan area; Earth Planet. Space 611 1077–1088.CrossRefGoogle Scholar
  17. Dainty A M and Toksoz M N 1981 Seismic codas on the earth and the moon a comparison; Phys. Earth Planet. Inter. 26 250–260.CrossRefGoogle Scholar
  18. Dasovic I, Herak M and Herak D 2013 Coda-\(Q\) and its lapse time dependence analysis in the interaction zone of the Dinarides, the Alps and the Pannonian basin; Phys. Chem. Earth 63 47–54.CrossRefGoogle Scholar
  19. Dunn J A 1929 The geology of north Singhbhum; Mem. Geol. Soc. India 54 166.Google Scholar
  20. Fehler M, Hoshiba M, Sato H and Obara K 1992 Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance; Geophys. J. Int. 108 787–800.CrossRefGoogle Scholar
  21. Frankel A D and Wennerberg L 1987 Energy-flux model of seismic coda: Separation of scattering and intrinsic attenuation; Bull. Seismol. Soc. Am. 771 223–1251.Google Scholar
  22. Frankel A, Mcgarr A, Bicknell J, Mri J, Seeber L and Cranswick E 1990 Attenuation of high-frequency shear waves in the crust: Measurements from New York State, South Africa and Southern California; J. Geophys. Res. 95 17441–17457.CrossRefGoogle Scholar
  23. Gao L S, Lee L C, Biswas N N and Aki K 1983 Comparison of the effects between single and multiple scattering on Coda waves for local earthquakes; Bull. Seismol. Soc. Am. 73 377–389.Google Scholar
  24. Ghosh S K and Sengupta S 1990 The Singhbhum shear zone: Structural transition and a kinematic model; Proc. Indian Acad. Sci. 1 229–247.Google Scholar
  25. Giampiccolo E, Tusa G, Langer H and Gresta S 2002 Attenuation in Southeastern Sicily (Italy) by applying different coda methods; J. Seismol. 6 487–501.CrossRefGoogle Scholar
  26. Gupta S, Mohanty W K, Mandal A and Misra S 2014 Ancient terrane boundaries as probable seismic hazards: A case study from the northern boundary of the Eastern Ghats Belt, India; Geosci. Front. 5 17–24.CrossRefGoogle Scholar
  27. Gusev A A 1995 Vertical profile of turbidity and coda Q; Geophys. J. Int. 123 665–672.CrossRefGoogle Scholar
  28. Havskov J and Ottemoller L 2003 SEISAN: The earthquake analysis softwares for Windows, Solaris and Linux, Version 8.0; Institute of Solid Earth Physics, University of Bergen, Norway.Google Scholar
  29. Havskov J, Malone S, Mcclurg D and Crosson R 1989 Coda \(Q\) for the state of Washington; Bull. Seismol. Soc. Am. 79 1024–1038.Google Scholar
  30. Havskov J, Sørensen M, Vales D, Özyazıcıoğlu M, Sánchez G and Li B 2016 Coda \(Q\) in different tectonic areas, influence of processing parameters; Bull. Seismol. Soc. Am. 106(3) 956–970.CrossRefGoogle Scholar
  31. Hazarika P, Kumar M R and Kumar D 2013 Attenuation character of seismic waves in Sikkim Himalaya; Geophys. J. Int. 195 544–557.CrossRefGoogle Scholar
  32. Herak M 1991 Lapse time dependent \(Q_{c}\)-spectra observed in the Dinarides region (Yugoslavia); Phys. Earth Planet. Inter. 67 303–312.CrossRefGoogle Scholar
  33. Herraiz M and Espinosa A F 1987 Coda waves: A review; Pure Appl. Geophys. 125 499–577.CrossRefGoogle Scholar
  34. Herrmann R B 1980 Q estimation using the coda of local earthquakes; Bull. Seismol. Soc. Am. 70 447–468.Google Scholar
  35. Hoshiba M 1991 Simulation of multiple scattered coda wave excitations based on the energy conservation law; Phys. Earth Planet. Inter. 67 123–136.CrossRefGoogle Scholar
  36. Hoshiba M 1993 Separation of scattering attenuation and intrinsic absorption in Japan with the multiple lapse time window analysis from full seismogram envelope; J. Geophys. Res. 98(15) 809–824.Google Scholar
  37. Jin A and Aki K 1988 Spatial and temporal correlation between coda \(Q\) and seismicity in China; Bull. Seismol. Soc. Am. 78 741–769.Google Scholar
  38. Kayal J R, Srivastava V K, Bhattacharya S N, Khan P K and Chatterjee R 2009 Source parameters and focal mechanisms of local earthquakes: Single broadband observatory at ISM Dhanbad; J. Geol. Soc. India 74 413–419.CrossRefGoogle Scholar
  39. Khan P K, Biswas B, Samdarshi P and Prasad R 2011 Seismicity and the coda-\(Q\) variation in eastern Indian shield region; Indian J. Geosci. 65(2) 43–50.Google Scholar
  40. Khan P K, Bhukta K and Tarafder G 2016 Coda \(Q\) in Eastern Indian Shield; Act. Geodt. Geophys. 51 333–346,  https://doi.org/10.1007/s40328-015-0129.
  41. Kopnichev Y F 1977 The role of multiple scattering in the formation of a seismogram’s tail; Izv. Acad. Sci. USSR, Phy. Solid Earth 13 394–398.Google Scholar
  42. Kvamme L B and Havskov J 1989 Q in Southern Norway; Bull. Seismol. Soc. Am. 79 1575–1588.Google Scholar
  43. Mak S, Chan L S, Chandler A M and Koo R C H 2004 Coda \(Q\) estimates in the Hong Kong region; J. Asian Earth Sci. 24 127–136.CrossRefGoogle Scholar
  44. Mandal P and Biswas K 2016 Teleseismic receiver function modeling of the eastern Indian craton; Phys. Earth Planet. Inter. 268 1–14,  https://doi.org/10.1016/j.pepi.2016.07.002.CrossRefGoogle Scholar
  45. Mandal P, Jainendra S, Joshi S, Kumar S, Bhunia R and Rastogi B K 2004 Low coda \(Q_{c}\) in the epicentral region of the 2001 Bhuj earthquake of Mw 7.7; Pure Appl. Geophys. 161 1635–1654.Google Scholar
  46. Margerin L, Campillo M and Van Tiggelen B 1998 Radiative transfer and diffusion of waves in a layered medium, new insight into coda \(Q\); Geophys. J. Int. 134 247–258.CrossRefGoogle Scholar
  47. Mazumder R, Van Loon A J, Mallik L, Reddy S M, Arima M, Altermann W, Eriksson P G and De S 2012 Mesoarchaean-Palaeoproterozoic stratigraphic record of the Singhbhum crustal province, eastern India: A synthesis; In: Palaeoproterozoic of India (eds) Mazumder R and Saha D, Geol. Soc. London 365 31–49.Google Scholar
  48. Misra S 2006 Precambrian chronostratigraphic growth of Singhbhum-Orissa Craton, Eastern Indian Shield: An alternative model; J. Geol. Soc. India 67 356–378.Google Scholar
  49. Mitchell B J 1981 Regional variation and frequency dependence of \(Q\) in the crust of the United States; Bull. Seismol. Soc. Am. 71 1531–1538.Google Scholar
  50. Mitchell B 1995 Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation; Rev. Geophys. 33 441–462.CrossRefGoogle Scholar
  51. Mukhopadhyay S, Tyagi C and Rai S S 2006 The attenuation mechanism of seismic waves in northwestern Himalayas; Geophys. J. Int. 167 354–360.CrossRefGoogle Scholar
  52. Mukhopadhayay S and Tyagi C 2007 Lapse time and frequency-dependent attenuation characteristics of coda waves in the Northwestern Himalayas; J. Seismol. 11 149–158.CrossRefGoogle Scholar
  53. Mukhopadhyay J, Beukes N J, Armstrong R A, Zimmermann U, Ghosh G and Medda R A 2008 Dating the oldest Greenstone in India: A 3.51 Ga precise U–Pb SHRIMP Zircon Age for Dacitic Lava of the Southern Iron Ore Group, Singhbhum Craton; J. Geol. 116 449–461.CrossRefGoogle Scholar
  54. Nuttli O W 1973 Seismic wave attenuation and magnitude relations for eastern North America; J. Geophys. Res. 78 876–885.CrossRefGoogle Scholar
  55. Oldham T 1883 A catalogue of Indian earthquakes from the earliest times to the end of 1869 A.D.; Mem. Geol. Surv. India 19(3) 163–215.Google Scholar
  56. Padhy S 2009 Characteristics of body-wave attenuations in the Bhuj crust; Bull. Seismol. Soc. Am.  99 3300–3313.CrossRefGoogle Scholar
  57. Padhy S and Subhadra N 2010 Attenuation of high-frequency seismic waves in northeast India; Geophys. J. Int. 181 453–467.CrossRefGoogle Scholar
  58. Parvez I A, Sutar A K, Mridula M, Mishra S K and Rai S S 2008 Coda \(Q\) estimates in the Andaman Islands using local earthquakes; Pure Appl. Geophys. 165 1861–1878.CrossRefGoogle Scholar
  59. Paul A, Gupta S C and Pant C 2003 Coda \(Q\) estimates for Kumaun Himalaya; Proc. Indian Nat. Sci. Acad. (Earth Planet. Sci.) 112 569–576.Google Scholar
  60. Pujades L, Ugalde A, Canas J A, Navarro M, Badal F J and Corchete V 1997 Intrinsic and scattering attenuation form observed seismic codas in the Almeria Basin (Southeastern Iberian Peninsula); Geophys. J. Int. 129 281–291.CrossRefGoogle Scholar
  61. Pulli J J 1984 Attenuation of coda waves in New England; Bull. Seismol. Soc. Am. 74 1149–1166.Google Scholar
  62. Rautian T G and Khalturin V I 1978 The use of the coda for determination of earthquake source spectrum; Bull. Seismol. Soc. Am. 68 923–948.Google Scholar
  63. Roecker S W, Tucker B, King J and Hatzfeld D 1982 Estimates of \(Q\) in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes; Bull. Seismol. Soc. Am. 72 129–149.Google Scholar
  64. Saha A K 1994 Crustal evolution of Singhbhum – North Orissa, Eastern India; Mem. Geol. Soc. India 27 341.Google Scholar
  65. Sarkar A N 1982 Precambrian tectonic evolution of eastern India: A model of converging microplates; Tectonophys. 86 363–397.CrossRefGoogle Scholar
  66. Sarkar A N and Chakraborty D K 1982 One orogenic belt or two? A structural reinterpretation supported by Landsat data products of the Precambrian metamorphics of Singhbhum, Eastern India; Photogrammetria 37 185–201.CrossRefGoogle Scholar
  67. Sato H 1977 Energy propagation including scattering effects single isotropic scattering approximation; J. Geophys. Res. 25 27–41.Google Scholar
  68. Sato H 1988 Fractal interpretation of the linear relation between logarithms of maximum amplitude and hypocentral distance; Geophys. Res. Lett. 15 373–375.CrossRefGoogle Scholar
  69. Sato H and Fehler M C 1998 Seismic wave propagation and scattering in the heterogeneous earth; Springer-Verlag, New York.CrossRefGoogle Scholar
  70. Sharma B, Gupta A K, Devi D K, Kumar D, Teotia S S and Rastogi B K 2008 Attenuation of high-frequency seismic waves in Kachchh Region, Gujarat, India; Bull. Seismol. Soc. Am. 98 2325–2340.CrossRefGoogle Scholar
  71. Singh S and Hermann R 1983 Regionalization of crustal coda \(Q\) in the continental United States; J. Geophys. Res. 88 527–538.CrossRefGoogle Scholar
  72. Singh S K, Garcia D, Pacheco J F, Valenzuela R, Bansal B K and Dattatrayam R S 2004 Q of the Indian Shield; Bull. Seismol. Soc. Am94 1564–1570.CrossRefGoogle Scholar
  73. Tait J, Zimmermann U, Miyazaki T, Presnyakov S, Chang Q, Mukhopadhyay J and Sergeev S 2011 Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton; Geol. Mag. 148 340–347.CrossRefGoogle Scholar
  74. Wu R S 1985 Multiple scattering and energy transfer of seismic waves: Separation of scattering effect from intrinsic attenuation – I. Theoretical modeling; Geophys. J. Roy. Astron. Soc. 82 57–80.CrossRefGoogle Scholar
  75. Yoshimoto K, Sato H and Ohtake M 1993 Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda normalization method; Geophys. J. Int. 114 165–174.CrossRefGoogle Scholar
  76. Zeng Y, Su F and Aki K 1991 Scattered wave energy propagation in a random isotropic scattering medium: 1. Theory; J. Geophys. Res. 96 607–619.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Oil and Natural Gas Corporation LimitedDehradunIndia
  2. 2.National Geophysical Research Institute (CSIR)HyderabadIndia
  3. 3.Indian School of Mines (IIT)DhanbadIndia

Personalised recommendations