Advertisement

Geochemistry and mineral composition of lamprophyre dikes, central Iran: implications for petrogenesis and mantle evolution

  • Davood RaeisiEmail author
  • Kazem Gholoizade
  • Niloofar Nayebi
  • Shahrouz Babazadeh
  • Mostafa Nejadhadad
Article
  • 3 Downloads

Abstract

Late Proterozoic–Early Cambrian magmatic rocks that range in composition from mafic to felsic have intruded into the Hour region of the central Iranian micro-continent. The Hour lamprophyres are alkaline, being characterized by low contents of \(\hbox {SiO}_{2}\) and high \(\hbox {TiO}_{2}\), Mg# values, high contents of compatible elements, and are enriched in LREE and LILE but depleted in HFSE. Mineral chemistry studies reveal that the lamprophyres formed within a temperature range of \(\sim \)1200\(^{\circ }\) to \(1300^{\circ }\hbox {C}\) and relatively moderate pressure in subvolcanic levels. The Hour lamprophyres have experienced weak fractional crystallization and insignificant crustal contamination with more primitive mantle signatures. They were derived from low degree partial melting (1–5%) of the enriched mantle characterized by phlogopite/amphibole bearing lherzolite in the spinel-garnet transition zone at 75–85 km depth, and with an addition of the asthenospheric mantle materials. We infer the Hour lamprophyres to be part of the alkaline rock spectrum of the Tabas block and their emplacement, together with that of other alkaline complexes in the central Iran, was strongly controlled by pre-existing crustal weakness followed by the asthenosphere-lithospheric mantle interaction during the Early Cambrian.

Keywords

Central Iran alkaline lamprophyre mineral chemistry asthenosphere-lithospheric mantle 

Notes

Acknowledgements

We are grateful to Prof. Leon E Long for proof reading and editing the revised manuscript. We would like to thank the anonymous reviewers for their in-depth review and constructive comments.

References

  1. Ahijado A, Casillas R and Hernandez-Pacheco A 2001 The dyke swarms of the Amanay Massif, Fuerteventura, Canary Islands (Spain); J. Asian Earth Sci. 19 333–345.CrossRefGoogle Scholar
  2. Alavi M 1991 Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran; GSA Bull. 103 983–992.CrossRefGoogle Scholar
  3. Amel N 2008 Petrology and petrogenesis of Plio-Quaternary magmatic rocks of Azerbaijan-NW Iran; PhD thesis, University of Tabriz, Iran, 188p.Google Scholar
  4. Andronikov A V and Foley S F 2001 Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area; Chem. Geol.  175 291–305.CrossRefGoogle Scholar
  5. Aoki K I and Shiba I 1973 Pyroxenes from lherzolite inclusions of Itinome-gata, Japan; Lithos 6 41–51.CrossRefGoogle Scholar
  6. Ayers J 1998 Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones; Contrib. Mineral. Petrol. 132 390–404.CrossRefGoogle Scholar
  7. Barry T L, Saunders A D, Kempton P D, Windley B F, Pringle M S, Dorjnamjaa D and Saandar S 2003 Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources; J. Petrol. 44 55–91.CrossRefGoogle Scholar
  8. Berberian M and King G C P 1981 Towards a paleogeography and tectonic evolution of Iran; Can. J. Earth Sci.  18 210–265.CrossRefGoogle Scholar
  9. Bergmann 1987 Lamproites and other K-rich igneous rocks: review of their occurrence, mineralogy and geochemistry; In: Alkaline Igneous Rocks (eds) Fitton J G and Upton B G J, Geol. Soc. London Spec. Publ. 30 163–190.Google Scholar
  10. Brooks C K and Platt R G 1975 Kaersutite-bearing gabbroic inclusions and the late dike swarm of Kangerdlugssuaq, East Greenland; Min. Mag. 40 259–283.CrossRefGoogle Scholar
  11. Brown G F and Jackson R D 1979 An overview of the geology of Western Arabia; In: Evolution and Mineralization of the Arabian-Nubian Shield (ed.) Tahoun S A, Inst. Appl. Geol., King Abdulaziz Univ., Jeddah, Bull. 3 3–10.Google Scholar
  12. Cornen G 1982 Petrology of the alkaline volcanism of Gorringe Bank (southwest Portugal); Mar. Geol. 47 101–130.CrossRefGoogle Scholar
  13. Deer W A, Howie R A and Zussman J 1992 An introduction to the rock-forming minerals; Longman Scientific and Technical, Hong Kong, 558p.Google Scholar
  14. Foley S 1992 Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas; Lithos 28 435–453.CrossRefGoogle Scholar
  15. Foley S F, Barth M G and Jenner G A 2000 Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas; Geochim. Cosmochim. Acta 64 933–938.CrossRefGoogle Scholar
  16. Foley S F, Jackson S E, Freyer B J, Greenouch J D and Jenner G A 1996 Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS; Geochim. Cosmochim. Acta 60 629–638.CrossRefGoogle Scholar
  17. Förster H 1974 Magmentypen und Erzlagerstätten im Iran; Geol. Rundsch. 63 276–292.CrossRefGoogle Scholar
  18. Fujimaki H, Tatsumoto M and Aoki K I 1984 Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses; J. Geophys. Res. (Solid Earth) 89 662–672.CrossRefGoogle Scholar
  19. Furman T and Graham D 1999 Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province; Lithos 48 237–262.CrossRefGoogle Scholar
  20. Gibson S A, Thompson R N, Dickin A P and Leonardos O H 1995 High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis; Earth Planet. Sci. Lett.  136 149–165.CrossRefGoogle Scholar
  21. Green D H and Ringwood A E 1970 Mineralogy of peridotitic compositions under upper mantle conditions; Phys. Earth Planet. Inter. 3 359–371.CrossRefGoogle Scholar
  22. Grégoire M, Moine B N, O’Reilly S Y, Cottin J Y and Giret A 2000 Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate-and carbonate-rich melts (Kerguelen Islands, Indian Ocean); J. Petrol. 41 477–509.CrossRefGoogle Scholar
  23. Guo F, Fan W, Wang Y and Zhang M 2004 Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt; Lithos  78 291–305.CrossRefGoogle Scholar
  24. Hassanzadeh J, Stockli D F, Horton B K, Axen G J, Stockli L D, Grove M, Schmitt A K and Walker J D 2008 U-Pb zircon geochronology of Late Neoproterozoic-Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement; Tectonophysics 451 71–96.CrossRefGoogle Scholar
  25. Hauser N, Matteini M, Omarini R H and Pimentel M M 2010 Constraints on metasomatized mantle under central South America: evidence from Jurassic alkaline lamprophyre dykes from the Eastern Cordillera, NM Argentina; Min. Petrol. 100 153–184.CrossRefGoogle Scholar
  26. Hofmann A W, Jochum K P, Seufert M and White W M 1986 Nb and Pb in oceanic basalts: new constraints on mantle evolution; Earth Planet. Sci. Lett. 79 33–45.CrossRefGoogle Scholar
  27. Ionov D A, Griffin W L and O’Reilly S Y 1997 Volatile-bearing minerals and lithophile trace elements in the upper mantle; Chem. Geol. 141 153–184.CrossRefGoogle Scholar
  28. Jami M, Dunlop A C and Cohen D R 2007 Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit, Central Iran; Econ. Geol. 102 1111–1128.CrossRefGoogle Scholar
  29. Jiang Y H, Jiang S Y, Ling H F and Ni P 2010 Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China; Min. Petrol.  100 127–151.CrossRefGoogle Scholar
  30. Kostopoulos D K and James S D 1992 Parameterization of the melting regime of the shallow upper mantle and the effects of variable lithospheric stretching on mantle modal stratification and trace-element concentrations in magmas; J. Petrol. 33 665–691.CrossRefGoogle Scholar
  31. Leake B E, Woolley A R, Birch W D, Burke E A, Ferraris G, Grice J D, Hawthorne F C, Kisch H J, Krivovichev V G, Schumacher J C and Stephenson N C 1997 Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s amphibole nomenclature; Min. Mag. 68 209–215.CrossRefGoogle Scholar
  32. Maury R C, Defant M J and Joron J L 1992 Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths; Nature  360 661–663.CrossRefGoogle Scholar
  33. McKenzie D 1989 Some remarks on the movement of small melt fractions in the mantle; Earth Planet. Sci. Lett. 95 53–72.CrossRefGoogle Scholar
  34. McKenzie D and O’Nions R K 1991 Partial melt distributions from inversion of rare earth element concentrations; J. Petrol. 32 1021–1091.CrossRefGoogle Scholar
  35. Miller C H, Schuster R, Klötzli U, Frank W and Purtscheller F 1999 Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis; J. Petrol. 40 1399–1424.CrossRefGoogle Scholar
  36. Moghadam H S and Stern R J 2014 Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (I) Paleozoic ophiolites; J. Asian Earth Sci. 91 19–38.CrossRefGoogle Scholar
  37. Moghadam H S and Stern R J 2015 Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites; J. Asian Earth Sci. 100 31–59.CrossRefGoogle Scholar
  38. Moghadam H S, Li X H, Stern R J, Santos J F, Ghorbani G and Pourmohsen M 2016 Age and nature of 560–520 Ma calc-alkaline granitoids of Biarjmand, northeast Iran: insights into Cadomian arc magmatism in northern Gondwana; Int. Geol. Rev. 58 1492–1509.Google Scholar
  39. Molina J F, Scarrow J H, Montero P and Bea F 2009 High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic-ultrabasic magmatism of Central Iberia; Contrib. Mineral. Petrol. 158 69–98.CrossRefGoogle Scholar
  40. Morimoto N 1988 Nomenclature of pyroxenes; Min. Petrol. 39 55–76.CrossRefGoogle Scholar
  41. Nisbet E G and Pearce J A 1977 Clinopyroxene composition in Marie lavas from different tectonic settings; Contrib. Mineral. Petrol. 63 149–160.CrossRefGoogle Scholar
  42. Orejana D, Villaseca C, Billström K and Paterson B A 2008 Petrogenesis of Permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe; Contrib. Mineral. Petrol. 156 477–500.CrossRefGoogle Scholar
  43. Pearce N J G and Leng M J 1996 The origin of carbonatites and related rocks from the Igaliko dyke swarm, Gardar Province, south Greenland: field, geochemical and C–O–Sr–Nd isotope evidence; Lithos 39 21–40.Google Scholar
  44. Ramezani J and Tucker R D 2003 The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics; Am. J. Sci. 303 622–665.CrossRefGoogle Scholar
  45. Rock N M S 1987 The nature and origin of lamprophyres: an overview; Geol. Soc. London Spec. Publ. 30 191–226.CrossRefGoogle Scholar
  46. Rock N M S 1991 Lamprophyres; Blackie Publication, Glasgow, 285p.Google Scholar
  47. Rossetti F, Nozaem R, Lucci F, Vignaroli G, Gerdes A, Nasrabadi M and Theye T 2015 Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in central Iran, Kuh-e-Sarhangi region (NW Lut Block); J. Asian Earth Sci. 102 24–44.CrossRefGoogle Scholar
  48. Rudnick R L and Gao S 2003 Composition of the continental crust; Treatise on Geochemistry 3, 659p.Google Scholar
  49. Sahandi M R 1995 Geological map of Horjand 1:100000, No. 7450; Geological Survey of Iran, Tehran.Google Scholar
  50. Samani B 1993 Saghand Formation, a riftogenic unit of upper Precambrian in central Iran; J. Geosci. 6 32–45.Google Scholar
  51. Samani B 1998 Precambrian metallogeny in central Iran; Scientific Bulletin of the Atomic Energy Organization of Iran 17 1–16.Google Scholar
  52. Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K and Pécskay Z 2004 Post-collisional Tertiary-Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: A review; Tectonophysics 393 43–62.CrossRefGoogle Scholar
  53. Şengör A M C, Cin A, Rowley D B and Shangyou N 1991 Magmatic evolution of the Tethysides: A guide to reconstruction of collage history; Palaeogeogr. Palaeoclimatol. Palaeoecol. 87 411–440.CrossRefGoogle Scholar
  54. Şengör A M C, Natal’In B A and Burtman V S 1993 Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia; Nature  364 299–307.CrossRefGoogle Scholar
  55. Soesoo A 1997 A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT-estimations; GFF 119 55–60.CrossRefGoogle Scholar
  56. Stolz A J, Jochum K P, Spettel B and Hofmann A W 1996 Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts; Geology 24 587–590.CrossRefGoogle Scholar
  57. Stosch H G, Romer R L, Daliran F and Rhede D 2011 Uranium-lead ages of apatite from iron oxide ores of the Bafq district, East-Central Iran; Miner. Deposita 46 9–21.CrossRefGoogle Scholar
  58. Su H M, Jiang S Y, Zhang D Y and Wu X K 2017 Partial melting of subducted sediments produced Early Mesozoic calc-alkaline lamprophyres from northern Guangxi Province, south China; Sci. Rep. 7 4864.CrossRefGoogle Scholar
  59. Sun S S and McDonough W S 1989 Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes; Geol. Soc. London Spec. Publ. 42 313–345.CrossRefGoogle Scholar
  60. Tappe S, Foley S F, Jenner G A, Heaman L M, Kjarsgaard B A, Romer R L, Stracke A, Joyce N and Hoefs J 2006 Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton; J. Petrol. 47 1261–1315.CrossRefGoogle Scholar
  61. Taylor S R and McLennan S M 1985 The continental crust: its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks; Blackwell Scientific Publications.Google Scholar
  62. Verdel C, Wernicke B P, Hassanzadeh J and Guest B 2011 A Paleogene extensional arc flare-up in Iran; Tectonics 30(3),  https://doi.org/10.1029/2010TC002809.
  63. Winchester J A and Floyd P A 1977 Geochemical discrimination of different magma series and their differentiation products using immobile elements; Chem. Geol. 20 325–343.CrossRefGoogle Scholar
  64. Woolley A R, Bergman S C, Edgar A D, Le Bas M J, Mitchell R H, Rock N M S and Smith B H S 1996 Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks; Can. Min. 34 175–186.Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Geology, Faculty of SciencesUniversity of TehranTehranIran
  2. 2.Department of GeologyUniversity of Shahid BeheshtiTehranIran
  3. 3.Department of GeologyTarbiat Modares UniversityTehranIran
  4. 4.Department of Earth Sciences, Faculty of ScienceShiraz UniversityShirazIran

Personalised recommendations