Advertisement

Variability in the ice sheet elevations over Antarctica derived from repetitive SARAL/AltiKa radar altimeter data (2013–2016)

  • Maya Raghunath SuryawanshiEmail author
  • Shard Chander
  • Sandip R Oza
  • I M Bahuguna
Article
  • 20 Downloads

Abstract

Changes in surface elevations of polar ice sheets are the result of changes in ice dynamics and surface mass balance. Here, we present intra- and inter-annual elevation changes over the Antarctic ice sheet using the AltiKa radar altimeter’s 40 Hz geophysical data record products for the period 2013–2016. Slope corrections were applied on the elevations using a digital elevation model (DEM) available from NASA’s ice, cloud and land elevation satellite (ICESat). Comparison of elevations from AltiKa and ICESat’s DEM yielded correlation, bias and root-mean-square-deviation values of the order of 0.99, −2.88 and 23.04 m, respectively, indicating the first-level accuracy of a former dataset. Further comparison of Airborne Topographic Mapper dataset with AltiKa derived elevation yielded 0.4 m root-mean-square-deviation over a part of Vostok subglacial lake. The intra-annual change indicates that for GY2 (glaciological year), GY3 and GY4, number of negative elevation change points exceeded the number of positive elevation change points during the Antarctic austral summer period (December–February). Inter-annual elevation changes were negative during 2013–2014 and positive during 2014–2015 over east Antarctica, whereas in west Antarctica negative elevation changes were observed for both periods.

Keywords

Antarctica ice sheet elevation change SARAL/AltiKa 

Notes

Acknowledgements

We express our gratitude to Shri Tapan Misra, Director, Space Applications Centre (SAC)–ISRO, Ahmedabad, India, for encouraging us to carry out polar science studies. In addition, the encouragement and directions given by Dr Rajkumar, Deputy Director, EPSA-SAC-ISRO, are duly acknowledged and appreciated. We also thank Dr A S Rajawat, Group Director, GHCAG-EPSA-SAC-ISRO, for the support given to us during the work.

References

  1. Bamber J L 1994 Ice sheet altimeter processing scheme; Int. J. Remote Sens. 15(4) 925–938.CrossRefGoogle Scholar
  2. Bamber J L, Gomez-Dans J L and Griggs J A 2009 A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods; Cryosphere 3 101–111,  https://doi.org/10.5194/tc-3-101-2009.CrossRefGoogle Scholar
  3. Bamber J L, Griggs J A, Hurkmans R T W L, Dowdeswell J A, Gogineni S P, Howat I, Mouginot J, Paden J, Palmer S, Rignot E and Steinhage D 2013 A new bed elevation data-set for Greenland; Cryosphere 7 499–510,  https://doi.org/10.5194/tc-7-499-2013.CrossRefGoogle Scholar
  4. Bindschadler R A, Zwally H J, Major J A and Brenner A C 1989 Surface topography of the Greenland ice sheet from satellite radar altimetry; NASA SP, 503p.Google Scholar
  5. Brenner A C, Bindschadler R A, Thomas R H and Zwally H J 1983 Slope-induced errors in radar altimetry over continental ice sheets; J. Geophys. Res. 88 1617–1623.CrossRefGoogle Scholar
  6. Brooks R L, Campbell W J, Ramseier R O, Stanley H R and Zwally H J 1978 Ice sheet topography by satellite altimetry; Nature 274 539–543.CrossRefGoogle Scholar
  7. Chander S, Mishra S K, Chauhan P and Ajai 2015 Ice height and backscattering coefficient variability over Greenland ice sheets using SARAL radar altimeter; Marine Geodesy 38(1) 466–476,  https://doi.org/10.1080/014490419.2014.990590.CrossRefGoogle Scholar
  8. Davis C H and Ferguson A C 2004 Elevation change of the Antarctic ice sheet, 1995–2000, from ERS-2 satellite radar altimetry; IEEE Trans. Geosci. Remote Sens. 42(11) 2437–2445.CrossRefGoogle Scholar
  9. DiMarzio J, Brenner A, Schutz R, Shuman C A and Zwally H J 2007 GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica Boulder, Colorado USA; National Snow and Ice Data Center.Google Scholar
  10. Ewert H, Groh A and Dietrich R 2012 Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE; J. Geodyn. 59–60 111–123,  https://doi.org/10.1016/j.jog.2011.06.003.CrossRefGoogle Scholar
  11. Foresta L, Gourmelen N, Palsson F, Nienow P, Bjornsson H and Shepherd A 2016 Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat-2 altimetry; Geophys. Res. Lett. 43(12) 138–145,  https://doi.org/10.1002/2016GL071485.CrossRefGoogle Scholar
  12. Fretwell P, Pritchard H D, Vaughan D G, Bamber J L, Barrand N E, Bell R, Bianchi C, Bingham R G, Blankenship D D, Casassa G, Catania G, Callens D, Conway H, Cook A J, Corr H F J, Damadske, D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs J A, Hindmarsh R C A, Holmlund P, Holt J W, Jacobel R W, Jenkins A, Jokat W, Jordan T, King E C, Kohler J, Krabill W, Riger-Kusk M, Langley K A, Leitchenkov G, Leuschen C, Luyendyk B P, Matsuoka K, Mouginot J, Nitsche F O, Nogi Y, Nost O A, Popov S V, Rignot E, Rippin D M, Rivera A, Roberts J, Ross N, Siegert M J, Smith A M, Steinhage D, Studinger M, Sun B, Tinto B K, Welch B C, Wilson D, Young D A, Xiangbin C and Zirizzott A 2013 Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica; Cryosphere 7 375–393.CrossRefGoogle Scholar
  13. Fu L L and Cazenave A 2001 Satellite altimetry and earth sciences: A handbook of techniques and applications; Academic Press, London.Google Scholar
  14. Helm V, Humbert A and Miller H 2014 Elevation and elevation change of Greenland and Antarctica derived from Cryosat-2; Cryosphere 8 1539–1559.CrossRefGoogle Scholar
  15. Howat I M, Negrete A and Smith B E 2014 The Greenland Ice Mapping Project (GIMP) land classification and surface elevation datasets; Cryosphere Discuss. 8 453–478,  https://doi.org/10.5194/tcd-8-453-2014.CrossRefGoogle Scholar
  16. Hurkmans R T W L, Bamber J L and Griggs J A 2012 Importance of slope induced error in correction in volume change estimates from radar altimetry; Cryosphere 6 447–451,  https://doi.org/10.5194/tc-6-447-2012.CrossRefGoogle Scholar
  17. Legresy B, Blarel F and Remy F 2006 Along track repeat altimetry for ice sheets and continental surface studies; Proceedings of symposium 15 years program on radar altimetry, Venice, Italy, 614, 181, ESA-SP, Noordwijk, The Netherlands.Google Scholar
  18. Legresy B, Papa F, Remy F, Vinay G, Bosch van den M and Zanife O Z 2005 ENVISAT radar altimeter measurements over continental surfaces and ice caps using the ICE-2 retracking algorithm; Remote Sens. Environ. 95(2) 150–163,  https://doi.org/10.1016/j.rse.2004.11.018.CrossRefGoogle Scholar
  19. Liu H, Jezek K C, Li B and Zhao Z 2001 Radarsat Antarctic Mapping Project Digital Elevation Model Version 2; Digital media, National Snow and Ice Data Center, Boulder, CO, USA.Google Scholar
  20. Mouginot J, Rignot E and Scheuchl B 2014 Sustained increase in ice discharge from the Amundsen sea embayment, west Antarctica, from 1973 to 2013; Geophys. Res. Lett. 41 1576–1584,  https://doi.org/10.1002/2013GL059069.CrossRefGoogle Scholar
  21. Pritchard H D, Arthern R J, Vaughan D G and Edwards L A 2009 Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets; Nature 461 447–558,  https://doi.org/10.1038/nature08471.CrossRefGoogle Scholar
  22. Remy F, Flament T, Michel A and Blumstein D 2015 Envisat and SARAL/AltiKa observations of the Antarctic ice sheet: A comparison between the Ku-band and Ka-band; Marine Geodesy 38(S1) 510–521,  https://doi.org/10.1080/01490419.2014.985347.CrossRefGoogle Scholar
  23. Remy F, Flament T, Michel A and Verron J 2014 Ice sheet survey over Antarctica using satellite altimetry: ERS-2, Envisat, SARAL/AltiKa, the key importance of continuous observations along the same repeat orbit; Int. J. Remote Sens. 35(14) 5497–5512,  https://doi.org/10.1080/01431161.2014.926419.CrossRefGoogle Scholar
  24. Remy F, Mazzega P, Houry S, Brossier C and Minster J F 1989 Mapping of the topography of continental ice by inversion of satellite altimeter data; J. Glaciol. 35(119) 98–107.CrossRefGoogle Scholar
  25. Rosmorduc V, Benveniste J, Bronner E, Dinardo S, Lauret O, Maheu C, Milagro M, Picot N 2011 Radar altimetry tutorial; (eds) Benveniste J and Picot N, http://www.altimetry.info.
  26. Shepherd A, Ivins E R A G, Barletta V R, Bentley M J, Bettadpur S, Briggs K H, Bromwich D H, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King M A, Lenaerts J T M, Li J, Ligtenberg S R M, Luckman A, Luthcke S B, McMillan M, Meister R, Milne G, Mouginot J, Muir A, Nicolas J P, Paden J, Payne A J, Pritchard H, Rignot E, Rott H, Sørensen L S, Scambos T A, Scheuchl B, Schrama E J O, Smith B, Sundal A V, van Angelen J H, van de Berg W J, van den Broeke M R, Vaughan D G, Velicogna I, Wahr J, Whitehouse P L, Wingham D J, Yi D, Young D and Zwally H J 2012 A reconciled estimate of ice-sheet mass balance; Science 338 1183–1189,  https://doi.org/10.1126/science.1228102.CrossRefGoogle Scholar
  27. Shuman C A, Zwally H J, Schutz B E, Brenner A C, DiMarzio J P, Suchdeo V P and Fricker H A 2006 ICESat Antarctic elevation data: Preliminary precision and accuracy assessment; Geophys. Res. Lett. 33 L07501,  https://doi.org/10.1029/2005GL025227.CrossRefGoogle Scholar
  28. Smith B E, Fricker H A, Joughin I R and Tulaczyk S 2009 An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008); J. Glaciol. 55 573–595,  https://doi.org/10.3189/002214309789470879.CrossRefGoogle Scholar
  29. Smith B E, Gourmelen N, Huth A and Joughin I 2017 Connected sub-glacial lake drainage beneath Thwaites glacier, west Antarctica; Cryosphere 11 451–467,  https://doi.org/10.5194/tc-11-451-2017.CrossRefGoogle Scholar
  30. Sorensen L S, Simonsen S B, Nielsen K, Lucas Picher P, Spada G, Adalgeirsdottir G, Forsberg R and Hvidberg C S 2011 Mass balance of the Greenland ice sheet (2003–2008) from ICESat data: The impact of interpolation, sampling and firn density; Cryosphere 5 173–186,  https://doi.org/10.5194/tc-5-173-2011.CrossRefGoogle Scholar
  31. Stanley S J, Jenkins A, Giulivi C F and Dutrieux P 2011 Stronger ocean circulation and increased melting under Pine Island glacier ice shelf; Nat. Geosci. 4 519–523,  https://doi.org/10.1038/ngeo1188.CrossRefGoogle Scholar
  32. Wingham D J, Ridout A J, Scharroo R, Arthern R J and Shum C K 1998 Antarctic elevation change from 1992 to 1996; Science  282(5388) 456–458.CrossRefGoogle Scholar
  33. Xiaoli S, Shum C K, Kuo C and Yi Y 2016 Improved Envisat altimetry ice sheet elevation change data processing algorithms using repeat-track analysis; IEEE Trans. Geosci. Remote Sens. 13(8) 1099–1103.CrossRefGoogle Scholar
  34. Zwally H J, Bindschadler R A, Brenner A C, Martin T V and Thomas R H 1983 Surface elevation contours of Greenland and Antarctic ice sheets; J. Geophys. Res. 88(C3) 1589–1596.CrossRefGoogle Scholar
  35. Zwally H J, Judy A M, Brenner A C and Bindschadler R A 1987 Ice measurements by Geosat radar altimetry; Johns Hopkins APL Tech. Digest  8(2) 251–254.Google Scholar
  36. Zwally H J, Jun L, Brenner A C, Beckley M, Cornejo H G, DiMarzio J, Giovinetto M B, Neumann T A, Robbins J, Saba J L, Donghui Y and Wang W 2011 Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming: 2003–2007 versus 1992–2002; J. Glaciol. 57 88–102.CrossRefGoogle Scholar
  37. Zwally H J, Li J, Robbins J, Saba J, Yi D and Brenner A 2015 Mass gains of the Antarctic ice sheet exceed losses; J. Glaciol. 61(230) 1019–1036,  https://doi.org/10.3189/2015JoG15.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Maya Raghunath Suryawanshi
    • 1
    • 2
    Email author
  • Shard Chander
    • 1
  • Sandip R Oza
    • 1
    • 2
  • I M Bahuguna
    • 1
  1. 1.Space Applications Centre (ISRO)AhmedabadIndia
  2. 2.Department of Physics, Electronics and Space ScienceGujarat UniversityAhmedabadIndia

Personalised recommendations