Estimation and spatial mapping of seismicity parameters in western Himalaya, central Himalaya and Indo-Gangetic plain

  • Monalisha NayakEmail author
  • T G Sitharam


The present study attempts to assess the seismic hazard parameters (a, b and \(M_{\mathrm{c}})\) and their spatial variation in western Himalaya, central Himalaya and Indo-Gangetic plain areas (19–38\({^{\circ }}\hbox {N}\) and 72–91\({^{\circ }}\hbox {E}\)). The earthquake catalogue is prepared from different available sources, within a region of 500 km surrounding the study area, in moment magnitude scale. The maximum likelihood estimation method is used for spatial variation of seismicity parameters. The study area is disaggregated into small grids of \(0.5{^{\circ }}\times 0.5{^{\circ }}\), and the spatial variation of seismicity parameters is analysed for the complete catalogue period. A significant variation in seismicity parameters is observed while moving from west to east along the Himalayan belt within the study area. Due to significant variations in seismicity parameters, instead of assigning a lumped value of seismic hazard parameter to the entire region, distributed seismic hazard parameter is assigned by dividing the entire area into five zones, of similar level of seismicity. The estimated seismicity parameter a for these zones varies from 4.28 to 6.18, and for b, it varies from 0.80 to 1.03. Using these Gutenberg–Richter parameters a and b, the present study estimated the return periods and probability of different magnitudes of earthquake for each zone.


Himalayan region Indo-Gangetic plain seismicity parameters maximum likelihood estimation return period 


  1. Aki K 1965 Maximum likelihood estimate of \(b\) in the formula log\(N=a - bM\) and its confidence limits; Bull. Earthq. Res. Inst. Univ. Tokyo 43 237–239.Google Scholar
  2. Ali S M and Shanker D 2017 Study of seismicity in the NW Himalaya and adjoining regions using IMS network; J. Seismol. 21(2) 317–334.CrossRefGoogle Scholar
  3. Avouac J P, Meng L, Wei S, Wang T and Ampuero J P 2015 Lower edge of locked main Himalayan thrust unzipped by the 2015 Gorkha earthquake; Nat. Geosci. 8(9) 708–711.CrossRefGoogle Scholar
  4. Bender B 1983 Maximum likelihood estimation of \(b\) values for magnitude grouped data; Bull. Seismol. Soc. Am. 73(3) 831–851.Google Scholar
  5. Bilham R, Gaur V K and Molnar P 2001 Himalayan seismic hazard; Science 293(5534) 1442–1444.CrossRefGoogle Scholar
  6. Bungum H, Lindholm C D and Mahajan A K 2017 Earthquake recurrence in NW and central Himalaya; J. Asian Earth Sci. 138 25–37.CrossRefGoogle Scholar
  7. Chernick M R 1999 Bootstrap methods: A practitioners guide; Wiley Series in Probability and Statistics, Wiley, New York.Google Scholar
  8. Chingtham P, Chopra S, Baskoutas I and Bansal B K 2014 An assessment of seismicity parameters in northwest Himalaya and adjoining regions; J. Nat. Hazards 71(3) 1599–1616.CrossRefGoogle Scholar
  9. Chingtham P, Yadav R B S, Chopra S, Yadav A K, Gupta A K and Roy P N S 2016 Time-dependent seismicity analysis in the Northwest Himalaya and its adjoining regions; Nat. Hazards 80(3) 1783–1800.CrossRefGoogle Scholar
  10. Das R, Wason H R and Sharma M L 2013 General orthogonal regression relations between body-wave and moment magnitudes; Seismol. Res. Lett. 84(2) 219–224.CrossRefGoogle Scholar
  11. Gutenberg B and Richter C F 1944 Frequency of earthquakes in California; Bull. Seismol. Soc. Am. 34(4) 185–188.Google Scholar
  12. Kayal J R 2008 Microearthquake seismology and seismotectonics of South Asia; 1st edn, Springer and Capital Publishing Company, India, ISBN: 978-1-4020-8180-4.Google Scholar
  13. Kolathayar S and Sitharam T G 2012 Characterization of regional seismic source zones in and around India; Seismol. Res. Lett. 83(1) 77–85.CrossRefGoogle Scholar
  14. Kolathayar S, Sitharam T G and Vipin K S 2012 Spatial variation of seismicity parameters across India and adjoining areas; Nat. Hazards 60(3) 1365–1379.CrossRefGoogle Scholar
  15. NDMA (National Disaster Management Authority) 2011 Development of probabilistic seismic hazard map of India 2011. Appendix I: Catalogue of earthquakes of moment magnitude \(\ge 4.0\) in and around India assembled from eighteen sources; Government of India, New Delhi.Google Scholar
  16. Raghukanth S T G 2010 Estimation of seismicity parameters for India; Seismol. Res. Lett. 81(2) 207–217.CrossRefGoogle Scholar
  17. Rajendran C P and Rajendran K 2005 The status of central seismic gap a perspective based on the spatial and temporal aspects of the large Himalayan earthquakes; Tectonophys. 395(1) 19–39.CrossRefGoogle Scholar
  18. Rout M M, Das J and Kamal 2013 Temporal and spatial variations of seismicity parameters for Northwest Himalaya; Geosci. Remote Sens. Symp. (IGARSS), 2013 IEEE Int., pp. 3690–3693.Google Scholar
  19. Rydelek P A and Sacks I S 1989 Testing the completeness of earthquake catalogues and the hypothesis of self-similarity; Nature 337(6204) 251–253.CrossRefGoogle Scholar
  20. Schorlemmer D, Neri G, Wieme S and Mostaccio A 2003 Stability and significance tests for \(b\)-value anomalies: Example from the Tyrrhenian Sea; Geophys. Res. Lett. 30(16),
  21. SEISAT 2000 Seismotectonic atlas of India and its environs; Geological Survey of India, New Delhi.Google Scholar
  22. Shanker D and Sharma M L 1998 Estimation of seismic hazard parameters for the Himalayas and its vicinity from complete data files; Pure Appl. Geophys. 152(2) 267–279.CrossRefGoogle Scholar
  23. Singh M and Shanker D 2015 Seismic hazard assessment in Hindukush–Pamir Himalaya using IMS network; J. Geosci. 5(3) 81–85.Google Scholar
  24. Stepp J C 1972 Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard; In: Proceedings of the International Conference on Microzonazion, Seattle, Washington, Vol. 2, pp. 897–910.Google Scholar
  25. Stevens V L and Avouac J 2016 Millenary M\(_{{\rm w}}>9.0\) earthquake required by geodetic strain in the Himalaya; Geophys. Res. Lett. 43 1118–1123.CrossRefGoogle Scholar
  26. Uhrhammer R A 1986 Characteristics of northern and central California seismicity; Earthq. Notes 57(1) 21.Google Scholar
  27. Utsu T 1965 A method for determining the value of \(b\) in a formula log \(n=a-bM\) showing the magnitude–frequency relation for earthquakes; Geophys. Bull. Hokkaido Univ. 13 99–103.Google Scholar
  28. Utsu T 1999 Representation and analysis of the earthquake size distribution: A historical review and some new approaches; Pure Appl. Geophys. 155(2–4) 509–535.CrossRefGoogle Scholar
  29. Wason H R, Das R and Sharma M L 2012 Magnitude conversion problem using general orthogonal regression; Geophys. J. Int. 190(2) 1091–1096.CrossRefGoogle Scholar
  30. Wiemer S 2001 A software package to analyze seismicity: ZMAP; Seismol. Res. Lett. 72(3) 373–382.CrossRefGoogle Scholar
  31. Wiemer S and Wyss M 2000 Minimum magnitude of completeness in earthquake catalogues: Examples from Alaska, the western United States, and Japan; Bull. Seismol. Soc. Am. 90(4) 859–869.CrossRefGoogle Scholar
  32. Woessner J and Wiemer S 2005 Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty; Bull. Seismol. Soc. Am. 95(2) 684–698.CrossRefGoogle Scholar
  33. Yadav R B S, Bayrak Y, Tripathi J N, Chopra S, Singh A P and Bayrak E 2012 A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions; Pure Appl. Geophys. 169(9) 1619–1639.CrossRefGoogle Scholar
  34. Yadav R B S, Tsapanos T M, Bayrak Y, Koravos G C and Devlioti K D 2013 Spatial mapping of earthquake hazard parameters in the Hindukush–Pamir Himalaya and adjacent regions: Implication for future seismic hazard; J. Asian Earth Sci. 70 115–124.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of ScienceBengaluruIndia

Personalised recommendations