Investigating daytime and night-time differences with the seasonal trend and sources of inorganic fine aerosols in Indo-Gangetic plain

  • S Chandra
  • M J KulshresthaEmail author
  • B Kumar
  • R K Kotnala


This study investigates the seasonal distribution of inorganic aerosols in Central New Delhi and identifies their potential source regions using concentration weighted trajectories (CWTs). Secondary inorganic aerosols (\(\hbox {NO}_{3}^{-}\), \(\hbox {SO}_{4}^{2-}\), \(\hbox {NH}_{4}^{+})\) are the largest contributors to fine particulate matter in New Delhi, India. The concentrations of secondary inorganic aerosols showed very distinct seasonal patterns with higher concentrations in winter and post-monsoon seasons. Inorganic ions \(\hbox {Ca}^{2+}\), \(\hbox {Mg}^{2+}\) and \(\hbox {K}^{+}\) were also examined to understand their temporal trends. The primary aerosols were found to have smaller diurnal differences than secondary aerosols. The higher coefficient of divergence for secondary aerosols indicated a significant difference in their chemistry and/or meteorology during daytime and night-time, respectively. The backward trajectory analysis revealed the advection of ionic species from distant sources responsible for their significant seasonality. The highest concentrations of \(\hbox {K}^{+}\) during the post-monsoon season were mainly influenced by air masses arriving from Punjab and Haryana regions resulting from the prominent agricultural crop residue burning in these areas. CWT also identified the Thar Desert and Punjab as potential regions for enhanced levels of \(\hbox {Ca}^{2+}\) and \(\hbox {K}^{+}\), respectively. Also, the brick kilns located in western UP were observed as the major potential sources for \(\hbox {NO}_{3}^{-}\) and \(\hbox {SO}_{4}^{2-}\).


\(\hbox {PM}_{2.5}\) water-soluble inorganic species secondary aerosols coefficient of divergence concentration weighted trajectory 



The authors are grateful to the Director, CSIR–NPL, for his encouragement and providing facilities to carry out this research work. One of the authors, S Chandra gratefully acknowledge CSIR fellowship. Benefits of scientific discussions with Prof. J J Schauer, University of Wisconsin, Madison, USA and Prof. U C Kulshrestha, Jawaharlal Nehru University, New Delhi, India, are gratefully acknowledged. The authors are thankful to the editor and anonymous reviewers for improving the quality of this paper.

Supplementary material

12040_2018_1064_MOESM1_ESM.doc (221 kb)
Supplementary material 1 (doc 220 KB)


  1. Arimoto R, Duce R A, Savoie D L, Prospero J M, Talbot R, Cullen J D, Tomza U, Lewis N F and Ray B J 1996 Relationships among aerosol constituents from Asia and the North Pacific during Pem-West A; J. Geophys. Res. 101 2011–2023.CrossRefGoogle Scholar
  2. Bassett M and Seinfeld J H 1983 Atmospheric equilibrium model of sulfate and nitrate aerosols; Atmos. Environ. 17 2237–2252.CrossRefGoogle Scholar
  3. Beegum S N, Moorthy K K, Gogoi M M, Babu S S and Pandey S K 2012 Multi-year investigations of aerosols from an Island station, Port Blair, in the Bay of Bengal: Climatology and source impacts; Ann. Geophys. 30 1113–1127.CrossRefGoogle Scholar
  4. Bisht D S, Dumka U C, Kaskaoutis D, Pipal A S, Srivastava A K, Soni V K, Attri S D, Steesh M and Tiwari S 2015 Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing; Sci. Total Environ. 521522 431–445.Google Scholar
  5. Brown S S, Ryerson T B, Wollny A G, Brock C A, Peltier R, Sullivan A P, Weber R J, Dube W P, Trainer M, Meagher J F, Fehsenfeld F C and Ravishankara A R 2006 Variability in nocturnal nitrogen oxide processing and its role in regional air quality; Science 311 67–70.CrossRefGoogle Scholar
  6. Chandra S, Kulshrestha M J and Singh R 2014 Temporal variation and concentration weighted trajectory analysis of lead in \(\text{ PM }_{10}\) aerosols at a site in central Delhi, India; Int. J. Atmos. Sci. 2014 1–8, Scholar
  7. Chandra S, Kulshrestha M J, Singh R and Singh N 2017 Chemical characteristics of trace metals in \(\text{ PM }_{10}\) and their concentrated weighted trajectory analysis at Central Delhi, India; J. Environ. Sci. 55 184–196.CrossRefGoogle Scholar
  8. Cheng I, Zhang L, Blanchard P, Dalziel J and Tordon R 2013 Concentrated-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada; Atmos. Chem. Phys. 13 6031–6048.CrossRefGoogle Scholar
  9. Cheng C, Wang G, Meng J, Wang Q, Cao J, Li J and Wang J 2015 Size-resolved airborne particulate oxalic and related secondary organic aerosol species in the urban atmosphere of Chengdu, China; Atmos. Res. 161162 134–142.CrossRefGoogle Scholar
  10. Cheung H C, Wang T, Baumann K and Guo H 2005 Influence of regional pollution outflow on the concentrations of fine particulate matter and visibility in the coastal area of southern China; Atmos. Environ. 39 6463–6474.CrossRefGoogle Scholar
  11. Dall’Osto M, Harrison R M, Coe H and Williams P 2009 Real-time secondary aerosol formation during a Fog event in London; Atmos. Chem. Phys. 9 2459–2469.CrossRefGoogle Scholar
  12. Deshmukh D K, Deb M K and Verma S K 2010 Distribution patterns of coarse, fine and ultrafine atmospheric aerosol particulate matters in major cities of Chhattisgarh; Indian J. Environ. Protection 30 184–197.Google Scholar
  13. Deshmukh D K, Deb M K, Tsai Y I and Mkoma S L 2011 Water soluble ions in \(\text{ PM }_{2.5}\) and \(\text{ PM }_1\) aerosols in Durg city, Chhattisgarh, India, India; Aerosol Air Qual. Res. 11 696–708.CrossRefGoogle Scholar
  14. Echalar F, Artaxo P and Martins J V 1998 Long-term monitoring of atmospheric aerosols in the Amazon Basin’ Source identification and apportionment; J. Geophys. Res. 103 31849–31864.CrossRefGoogle Scholar
  15. Fang G, Chang C, Wu Y and Fu P P 2002 Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998–2001; Atmos. Environ. 36 1921–1928.CrossRefGoogle Scholar
  16. Finlayson-Pitts B J and Pitts Jr J N 2000 Chemistry of the Upper and Lower Atmosphere; Academic Press, San Diego, CA, USA.Google Scholar
  17. Ghosh S, Gupta T, Rastogi N, Gaur A, Misra A, Tripathi S N, Paul D, Tare V, Prakash O, Bhattu D, Dwivedi A K, Kaul D S, Dalai R and Mishra S K 2014 Chemical characterization of summer time dust events at Kanpur: Insight into the sources and level of mixing with anthropogenic emissions; Aerosol Air Qual. Res. 14 879–891.CrossRefGoogle Scholar
  18. Guo S, Hu M, Wang Z B, Slanina J and Zhao Y L 2010 Size-resolved aerosol water soluble ionic compositions in the summer of Beijing: Implication of regional secondary formation; Atmos. Chem. Phys. 10 947–959.CrossRefGoogle Scholar
  19. Han Y J, Kim H W, Cho S H, Kim P R and Kim W J 2015 Metallic elements in \(\text{ PM }_{2.5}\) in different functional areas of Korea: Concentrations and source identification; Atmos. Res. 153 416–428.CrossRefGoogle Scholar
  20. Hong Y M, Lee B K, Park K J, Kang M H, Jung Y R, Lee D S and Kim M G 2002 Atmospheric nitrogen and sulphur containing compounds for three sites of south Korea; Atmos. Environ. 36 3485–3494.CrossRefGoogle Scholar
  21. Hsu Y K, Holsen T M and Hopke P K 2003 Comparison of hybrid receptor models to locate PCB sources in Chicago; Atmos. Environ. 37 545–562.CrossRefGoogle Scholar
  22. Hu M, He L, Zhang Y, Wang M, Kim Y P and Moon K C 2002 Seasonal variation of ionic species in fine particles at Qingdao, China; Atmos. Environ. 36 5853–5859.CrossRefGoogle Scholar
  23. Huang B, Liu M, Ren Z, Bi X, Zhang G, Sheng G and Fu J 2013 Chemical composition, diurnal variation and sources of \(\text{ PM }_{2.5}\) at two industrial sites of South China; Atmos. Pollut. Res. 4 298–305.CrossRefGoogle Scholar
  24. Intergovernmental Panel on Climate Change (IPCC) 2007 IPCC Fourth Assessment Report; Cambridge University Press, London.Google Scholar
  25. Jonathan L B, Neil L R and Xuezhu L 1997 A continuous, high resolution record of urban airborne particulates suitable for retrospective microscopical analysis; Atmos. Environ. 31 171–181.CrossRefGoogle Scholar
  26. Karageorgos E T and Rapsomanikis S 2007 Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece; Atmos. Chem. Phys. 7 3015–3033.Google Scholar
  27. Karar K and Gupta A K 2006 Seasonal variations and chemical characterization of ambient \(\text{ PM }_{10}\) at residential and industrial sites of an urban region of Kolkata (Calcutta), India; Atmos. Res. 81 36–53.CrossRefGoogle Scholar
  28. Kaskaoutis D G, Kumar S, Sharma D, Singh R P, Kharol S K, Sharma M, Singh A K, Singh S, Singh A and Singh D 2013 Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India; J. Geophys. Res: Atmos., Scholar
  29. Kesavachandran C N, Kamal R, Bihari V, Pathak M K and Singh A 2015 Particulate matter in ambient air and its association with alterations in lung functions and respiratory health problems among outdoor exercisers in National Capital Region, India; Atmos. Pollut. Res. 6 618–625.CrossRefGoogle Scholar
  30. Khana M F, Shirasuna Y, Hirano K and Masunaga S 2010 Characterization of \(\text{ PM }_{2.5}\), \(\text{ PM }_{2.5-10}\) and \(\text{ PM }_{>10}\) in ambient air, Yokohama, Japan; Atmos. Res. 96 159–172.CrossRefGoogle Scholar
  31. Khoder M I and Hassan S K 2008 Weekday/weekend differences in ambient aerosol level and chemical characteristics of water-soluble components in the city centre; Atmos. Environ. 42 7483–7493.CrossRefGoogle Scholar
  32. Kim E, Hopke P K and Edgerton E S 2003 Source identification of atlanta aerosol by positive matrix factorization; J. Air Waste Manage. Assoc. 53 731–739.CrossRefGoogle Scholar
  33. Krudysz1 M, Moore K, Geller M, Sioutas C and Froines C 2009 Intra-community spatial variability of particulate matter size distributions in Southern California/Los Angeles; Atmos. Chem. Phys. 9 1061–1075.Google Scholar
  34. Kulshrestha U C, Saxena A, Kumar N, Kumari K M and Srivastava S S 1998 Chemical composition and association of size-differentiated aerosols at a suburban site in a semi-arid tract of India; J. Atmos. Chem. 29 109–118.CrossRefGoogle Scholar
  35. Kulshrestha A, Bisht D S, Masih J, Massey D, Tiwari S and Taneja A 2009a Chemical characterization of water-soluble aerosols in different residential environments of semi-arid region of India; J. Atmos. Chem. 62 121–138.CrossRefGoogle Scholar
  36. Kulshrestha U C, Raman R S, Kulshrestha M J, Rao T N and Hazarika P J 2009b Secondary aerosol formation and identification of regional source locations by PSCF analysis in the Indo-Gangetic region of India; J. Atmos. Chem. 63 33–47.CrossRefGoogle Scholar
  37. Kulshrestha U C, Reddy L A K, Satyanarayana J and Kulshrestha M J 2009c Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian region; Atmos. Environ. 43 5123–5127.CrossRefGoogle Scholar
  38. Kumar A and Sarin M M 2009 Mineral aerosols from western India: Temporal variability of coarse and fine atmospheric dust and elemental characteristics; Atmos. Environ. 43 4005–4013.CrossRefGoogle Scholar
  39. Kumar A and Sarin M M 2010 Atmospheric water-soluble constituents in fine and coarse mode aerosols from high-altitude site in western India: Long-range transport and seasonal variability; Atmos. Environ. 44 1245–1254.CrossRefGoogle Scholar
  40. Kumar R, Srivastava S S and Kumari K M 2007 Characteristics of aerosols over urban and suburban site of semiarid region in India: Seasonal and spatial variations; Aerosol Air Qual. Res. 7 531–549.CrossRefGoogle Scholar
  41. Kumar S, Aggarwal S G, Gupta P K and Kawamura K 2015 Investigation of the tracers for plastic-enriched waste burning aerosols; Atmos. Environ. 108 49–58.CrossRefGoogle Scholar
  42. Kundu S, Kawamura K, Andreae T W, Hoffer A and Andreae M O 2010 Molecular distributions of dicarboxylic acids, ketocarboxylic acids and a dicarbonyls in biomass burning aerosols: Implications for photochemical production and degradation in smoke layers; Atmos. Chem. Phys. 10 2209–2225.CrossRefGoogle Scholar
  43. Lee Y L and Sequeira R 2002 Water-soluble aerosol and visibility degradation in Hong Kong during autumn and early winter, 1998; Environ. Pollut. 116 225–233.CrossRefGoogle Scholar
  44. Malm W C, Molenar J V, Eldred R A and Sisler J F 1996 Examining the relationship among atmospheric aerosols and light scattering and extinction in the Grand Canyon area; J. Geophys. Res. 101(14) 19251—-19265.CrossRefGoogle Scholar
  45. Mirante F, Salvador P, Pio C, Alves C, Artiñano B, Caseiro A and Revuelta M A 2014 Size fractionated aerosol composition at roadside and background environments in the Madrid urban atmosphere; Atmos. Res. 138 278–292.CrossRefGoogle Scholar
  46. Miyazaki Y, Aggarwal S G, Singh K, Gupta P K and Kawamura K 2009 Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes; J. Geophys. Res. 114 D19206, Scholar
  47. Nair P R, George S K, Sunilkumar S V, Parameswaran K, Jocab S and Abraham A 2006 Chemical composition of aerosol over peninsular India during winter; Atmos. Environ. 40 6477–6493.CrossRefGoogle Scholar
  48. Pitts B J F and Pitts J N 1986 Atmospheric chemistry: Fundamentals and experimental techniques; A Wiley-Interscience Publication, New York.Google Scholar
  49. Pope C A 2000 Review: Epidemiological basis for particulate air pollution health standards; Aerosol Sci. Technol. 32 4–14.CrossRefGoogle Scholar
  50. Ragosta M, Caggiano R, Macchiato M, Sabia S and Trippetta S 2008 Trace elements in daily collected aerosol: Level characterization and source identification in a four-year study; Atmos. Res. 89 206–217.CrossRefGoogle Scholar
  51. Rajput P, Sarin M M, Sharma D and Singh D 2014 Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain; Tellus B 66 21026, Scholar
  52. Ram K and Sarin M M 2011 Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation; Atmos. Environ. 45 460–468.CrossRefGoogle Scholar
  53. Rastogi N and Sarin M M 2006 Chemistry of aerosols over a semi-arid region: Evidence for acid neutralization by mineral dust; Geophys. Res. Lett. 33 L2 3815, Scholar
  54. Rengarajan R, Sudheer A K and Sarin M M 2011 Wintertime \(\text{ PM }_{2.5}\) and \(\text{ PM }_{10}\) carbonaceous and inorganic constituents from urban site in western India; Atmos. Res. 102(4) 420–431.Google Scholar
  55. Righi M J, Hendricks J and Sausen R 2013 The global impact of the transport sectors on atmospheric aerosol: Simulations for year 2000 emissions. Atmos. Chem. Phys. 13 9939–9970.CrossRefGoogle Scholar
  56. Seibert P, Kromp-Kolb H, Baltensperger U, Jost D T and Schwikowski M 1994 Trajectory analysis of high-alpine air pollution data; In: Air Pollution Modelling and its Application (eds) Gryning S-E and Millan M M, Plenum Press, New York, Vol. X, pp. 595–596.Google Scholar
  57. Seinfeld J H and Pandis S N 1998 Atmospheric chemistry and physics; Wiley, New York.Google Scholar
  58. Shen Z, Wang X, Zhang R, Ho K, Cao J and Zhang M 2011 Chemical composition of water-soluble ions and carbonate estimation in spring aerosol at a semiarid site of Tongyu, China; Aerosol Air Qual. Res. 11 360–368.CrossRefGoogle Scholar
  59. Singh R, Kulshrestha M J, Kumar B and Chandra S 2016 Impact of anthropogenic emissions and open biomass burning on carbonaceous aerosols in Urban and Rural Environments of Indo-Gangetic Plain; Air Qual. Atmos. Health 9 809–822.CrossRefGoogle Scholar
  60. Song X, Shao L, Zheng Q and Yang S 2014 Mineralogical and geochemical composition of particulate Matter (\(\text{ PM }_{10}\)) in coal and non-coal industrial cities of Henan Province, North China; Atmos. Res. 143 462–472.CrossRefGoogle Scholar
  61. Srivastava A K, Bisht D S, Ram K, Tiwari S and Srivastava M K 2014 Characterization of carbonaceous aerosols over Delhi in Ganga basin: Seasonal variability and possible sources; Environ. Sci. Pollut. Res. Inter. 21 8610–8619.CrossRefGoogle Scholar
  62. Stohl A 1996 Trajectory statistics – A new method to establish source-receptor relationship of air pollutants and its application to the transport of particulate sulfate in Europe; Atmos. Environ. 30 579–587.CrossRefGoogle Scholar
  63. Tiwari S, Srivastava A K, Bisht D S, Bano T, Singh S, Behura S, Srivastava A K, Chate D M and Padmanabhamurty B 2009 Black carbon and chemical characteristics of \(\text{ PM }_{10}\) and \(\text{ PM }_{2.5}\) at an urban site of North India; J. Atmos. Chem. 62 193–209.CrossRefGoogle Scholar
  64. Tsai H H, Yuan C S, Hung C H and Lin C 2011 Physicochemical properties of \(\text{ PM }_{2.5}\) and \(\text{ PM }_{2.5-10}\) at Inland and offshore sites over southeastern coastal region of Taiwan Strait; Aerosol Air Qual. Res. 11 664–678.CrossRefGoogle Scholar
  65. Tsai J H, Lin J H, Yao Y C and Chiang H L 2012 Size distribution and water soluble ions of ambient particulate matter on episode and non-episode days in southern Taiwan; Aerosol Air Qual. Res. 12 263–274.CrossRefGoogle Scholar
  66. Utsunomiya A and Shinji W 1996 Temperature and humidity dependence on aerosol composition in the northern Kyushu, Japan; Atmos. Environ. 30 2379–2386.CrossRefGoogle Scholar
  67. Wang Y, Zhuang G, Zhang X, Huang K, Xu C, Tang A, Chen J and An Z 2006 The ion chemistry, seasonal cycle, and sources of \(\text{ PM }_{2.5}\) and TSP aerosol in Shanghai; Atmos. Environ. textbf40 2935–2952.CrossRefGoogle Scholar
  68. Wang Y Q, Zhang X Y and Draxler R R 2009 Traj stat GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long term air pollution measurement data; Environ. Model. Soft. 24(8) 938–939.CrossRefGoogle Scholar
  69. WHO (World Health Organization) 2014 Ambient (outdoor) air pollution database (2014).
  70. Wilson J G, Kinghama S, Pearce J and Sturman A P 2005 A review of intra-urban variations in particulate air pollution: Implications for epidemiological research; Atmos. Environ. 39 6444–6462.CrossRefGoogle Scholar
  71. Xiao H and Liu C 2004 Chemical characteristics of water soluble components in TSP over Guiyang, SW China, 2003; Atmos. Environ. 38 6297–6306.CrossRefGoogle Scholar
  72. Xiao S, Wang Q Y, Cao J J, Huang R J, Chen W D, Han Y M, Xu H M, Liu S X, Zhou Y Q, Wang P, Zhang J and Zhan C L 2014 Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China; Atmos. Res. 149 88–95.CrossRefGoogle Scholar
  73. Yao X, Chan C K, Fang M, Cadle S, Chan T, Mulawa P, He K and Ye B 2002 The water-soluble ionic composition of \(\text{ PM }_{2.5}\) in Shanghai and Beijing, China; Atmos. Environ. 36 4223–4234.CrossRefGoogle Scholar
  74. Yuc X-Y, Leea T, Ayresa B, Kreidenweisa S M, Malmb W and Collett Jra L J 2006 Loss of fine particle ammonium from denuded nylon filters; Atmos. Environ. 40 4797–4807.CrossRefGoogle Scholar
  75. Zhang Q, Zhang J and Xue H 2010 The challenge of improving visibility in Beijing; Atmos. Chem. Phys. Discuss. 10 6199–6218.CrossRefGoogle Scholar
  76. Zhang N, Cao J, Liu S, Zhao Z, Xu H and Xiao S 2014 Chemical composition and sources of \(\text{ PM }_{2.5}\) and TSP collected at Qinghai Lake during summer time; Atmos. Res. 138 213–222.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • S Chandra
    • 1
    • 3
  • M J Kulshrestha
    • 1
    Email author
  • B Kumar
    • 2
  • R K Kotnala
    • 1
  1. 1.CSIR–National Physical LaboratoryNew DelhiIndia
  2. 2.Jawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Vivekananda College, University of DelhiDelhiIndia

Personalised recommendations