Advertisement

A new find of calc-alkaline lamprophyres in Thanewasna area, Western Bastar Craton, India

  • R R Meshram
  • M L Dora
  • R Naik
  • M Shareef
  • G Gopalakrishna
  • T Meshram
  • S R Baswani
  • K R Randive
Article
  • 51 Downloads

Abstract

Lamprophyre dykes within the granitoid and charnockite are reported for the first time from the Western Bastar Craton, Chandrapur district, Maharashtra. It shows porphyritic–panidiomorphic texture under a microscope, characterised by the predominance of biotite phenocrysts with less abundance of amphibole and clinopyroxene microphenocryst. The groundmass is composed more of K-feldspars over plagioclase, amphiboles, clinopyroxene, biotite, chlorite, apatite, sphene and magnetite. The mineral chemistry of biotite and magnesio-hornblende is indicative of minette variety of calc-alkaline lamprophyre (CAL), which is further supported by preliminary major oxides and trace element geochemistry. This unique association of CAL with granitoid provides an opportunity to study the spatio-temporal evolution of the lamprophyric magma in relation to the geodynamic perspective of the Bastar Craton.

Keywords

Lamprophyre minette Thanewasna central India 

Notes

Acknowledgements

We thank Shri. S N Meshram, Additional Director General and HOD, Geological Survey of India (GSI) and Shri. B K Bhandaru, Deputy Director General, RMH-IV, Central Region, GSI, Nagpur, for their kind encouragement and permission to publish this short paper in rapid communication. We extend our sincere thanks to Prof. N V C Rao, the Chief Editor of Journal of Earth System Science for his encouragement. We also thank reviewer Shri. R Vijay Kumar, Director, GSI, for his valuable suggestions that helped to improve the short paper.

References

  1. Carmichael I S E, Turner F J and Verhoogen J 1974 Igneous petrology; McGraw-Hill, New York.Google Scholar
  2. Chalapathi Rao N V, Dharma Rao C V and Das S 2012 Petrogenesis of lamprophyres from Chhota Udepur area, Narmada rift zone, and its relation to Deccan magmatism; J. Asian Earth Sci. 45 24–39.CrossRefGoogle Scholar
  3. Chalapathi Rao N V, Atiullah Burgess R, Nanda P, Choudhary A K, Sahoo S, Lehmann B and Chahong N 2016 Petrology, \(^{40}\text{Ar}/^{39}\text{ Ar }\) age, Sr–Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton; Mineral. Petrol. 110 269–293,  https://doi.org/10.1007/s00710-015-0403-5.
  4. Dora M L, Randive K R, Ramachandra H M and Suresh G 2017 Iron oxide–copper–gold mineralization at Thanewasna, Western Bastar Craton; Curr. Sci. 112(5) 10.CrossRefGoogle Scholar
  5. Fareeduddin and Mitchell R M 2012 Diamonds and their source rocks in India; Geol. Soc. of Ind., Bangalore, 434p.Google Scholar
  6. Garza A O, Dostal J, Keppie J D and Paz-Moreno F A 2013 Mid-Tertiary (25–21 Ma) lamprophyres in NW Mexico derived from subduction-modified subcontinental lithospheric mantle in an extensional backarc environment following steepening of the Benioff zone; Tectonophys. 590 59–71.CrossRefGoogle Scholar
  7. Jayananda M, Martin H, Peucat J J and Mahabaleswar B 1995 Late Archaean crust-mantle interactions: Geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, Southern India; Contrib. Mineral. Petrol. V 119 314–329.CrossRefGoogle Scholar
  8. Kumar K V and Rathna K 2008 Geochemistry of the mafic dykes in the Prakasam Alkaline Province of Eastern Ghats Belt, India: Implications for the genesis of continental rift-zone magmatism; Lithos 104 306–326.CrossRefGoogle Scholar
  9. Le Maitre R W 2002 Igneous rocks: A classification and glossary of terms, 2nd edn, Cambridge University Press, Cambridge, 236p.CrossRefGoogle Scholar
  10. Lefebvre N, Kopylova M and Kivi K 2005 Archaean calc-alkaline lamprophyres of Wawa, Ontario, Canada: Unconventional diamondiferous volcaniclastic rocks; Precamb. Res. 138 57–87.CrossRefGoogle Scholar
  11. Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D, Chalapathi Rao N V and Heaman L M 2010 Diamondiferous kimberlites in central India synchronous with Deccan flood basalts; Earth Planet. Sci. Lett. 290 142–149.CrossRefGoogle Scholar
  12. Madhavan V, David K, Mallikharjuna Rao J, Chalapathi Rao N V and Srinivas M 1998 Comparative study of lamprophyres from the Cuddapah Intrusive Province (CIP) of Andhra Pradesh, India; J. Geol. Soc. India 52 621–642.Google Scholar
  13. Mainkar D, Lehmann B and Haggerty S E 2004 The crater-facies kimberlite system of Tokapal, Bastar district, Chhattisgarh, India; Lithos 76 201–217.CrossRefGoogle Scholar
  14. McKenzie D 1989 Some remarks on the movement of small melt fractions in the mantle; Earth Planet. Sci. Lett. 95 53–72.CrossRefGoogle Scholar
  15. Meshram T M, Shukla D and Behera K K 2015 Alkaline lamprophyre (camptonite) from Bayyaram area, NE margin of the Eastern Dharwar Craton, southern India; Curr. Sci. 109(10–11) 1931–1934.Google Scholar
  16. Mitchell R H 1995 Kimberlites, orangeites and related rocks; Plenum Press, New York, 410p.CrossRefGoogle Scholar
  17. Pandey A, Chalapathi Rao N V, Pandit D, Pankaj P, Pandey R, Sahoo S and Kumar A 2017a Subduction – Tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin; Precamb. Res. 298 235–251.CrossRefGoogle Scholar
  18. Pandey A, Chalapathi Rao N V, Chakrabarti R, Pandit D, Pankaj P, Kumar A and Sahoo S 2017b Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: Geochemical and Sr–Nd isotopic evidence for a modified sub-continental lithospheric mantle source; Lithos 292–293 218–233,  https://doi.org/10.1016/j.lithos.2017.09.001.CrossRefGoogle Scholar
  19. Ramachandra H M 2004 A review of terrane evolution in the Precambrian Dharwar and Bastar Craton; GSI Spec. Publ. 84 1–21.Google Scholar
  20. Randive K R 2008 Compositional variation of micas from the lamprophyre dykes of Bakhatgarh–Phulmal Area, Jhabua District, M.P., India; In: Indian dykes: Geochemistry, geophysics and geochronology (eds) Rajesh K. Srivastava R K, Sivaji Ch and Chalapathi Rao N V, Narosa Publishing House Pvt. Ltd., New Delhi, India.Google Scholar
  21. Rock N M S 1991 Lamprophyres; Blackie, Glassgow, 285p.Google Scholar
  22. Seifert W 2005 REE-Zr and Th rich titanite and associated accessory minerals from a Kersentite in Frankenwald, Germany; Miner. Petrol. V 84.3 129–146.CrossRefGoogle Scholar
  23. Srivastava, Rajesh K 2006 Geochemistry and petrogenesis of neoarchaean high-mg low-ti mafic igneous rocks in an intracratonic setting, central India Craton: Evidence for boninite magmatism; Geochem. J. 40 15–31.CrossRefGoogle Scholar
  24. Stoppa F, Rukhlov A S, Bell K, Schiazza M and Vichi G 2014 Lamprophyres of Italy: Early cretaceous alkaline lamprophyres of Southern Tuscany, Italy; Lithos 188 97–112.CrossRefGoogle Scholar
  25. Ulrych J, Pivec E, Zak K, Bendl J and Bosak P 1993 Alkaline and ultramafic carbonate lamrophyres in Central Bohemian Carboniferous basins, Czech Republic; Miner. Petrol. V 48 65–81.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • R R Meshram
    • 1
  • M L Dora
    • 2
  • R Naik
    • 3
  • M Shareef
    • 4
  • G Gopalakrishna
    • 4
  • T Meshram
    • 2
  • S R Baswani
    • 2
  • K R Randive
    • 5
  1. 1.Geological Survey of India, NERGuwahatiIndia
  2. 2.Geological Survey of India, Petrology Division, CRNagpurIndia
  3. 3.Geological Survey of India, NERShillongIndia
  4. 4.EPMA LaboratoryNCEGR, GSIBengaluruIndia
  5. 5.P. G. Department of GeologyRTM Nagpur UniversityNagpurIndia

Personalised recommendations