Advertisement

Source characteristics of the upper mantle 21 May, 2014 Bay of Bengal earthquake of \({{\varvec{M}}}_{\!{{\varvec{w}}}}\)5.9

  • Prantik MandalEmail author
  • Koushik Biswas
  • Akhileshwar Prasad
Article
  • 68 Downloads

Abstract

We measure source parameters for the 21 May, 2014 Bay of Bengal earthquake through inversion modeling of S-wave displacement spectra from radial–transverse–vertical (RTZ) components recorded at ten broadband stations in the eastern Indian shield. The average source parameters are estimated using estimates from seven near stations (within epicentral distances \({\le }500\,\hbox {km}\)). The average seismic moment and source radius are determined to be \(1.0{\times }10^{18}\,\hbox {N-m}\) and 829 m, respectively, while average stress drop is found to be 76.5 MPa. The mean corner frequency and moment magnitude are calculated to be \(1.6\pm 0.1\) and \(5.9\pm 0.2\) Hz, respectively. We also estimated mean radiated energy and apparent stress, which are found to be \(6.1{\times }10^{13}\) joules and 1.8 MPa, respectively. We observe that mean \(E_{s}/M_{o}\) estimate of \(5.5{\times }10^{-5}\) is found to be larger than the global average for oceanic strike-slip events. This observation along with large stress drop and apparent stress estimates explains the observed remarkably felt intensity data of the 2014 event. The full waveform moment tensor inversion of the band-passed (0.03–0.12 Hz) broadband displacement data suggests the best fit for the multiple point sources on a plane located at 65 km depth, with a moment magnitude 6.4, and a focal mechanism with strike \(318^{\mathrm{o}}\), dip \(87^{\mathrm{o}}\), and rake \(34^{\mathrm{o}}\).

Keywords

Bay of Bengal strike-slip moment tensor source parameters apparent stress stress drops 

Notes

Acknowledgements

Authors are grateful to the Director, NGRI, Hyderabad, for his kind permission to publish this work. This study is supported by the Council of Scientific and Industrial Research (CSIR) 12th five year plan project (Index) at the CSIR–National Geophysical Research Institute, Hyderabad. The authors are thankful to Prof J Zahradink of Charles University, Prague, Czech Republic for providing ISOLA software code used in this study.

References

  1. Aki K 1965 Maximum likelihood estimate of b in the formula log N = a–b M and its confidence limits; B. Earthq. Res. I. Tokyo 43 237–239.Google Scholar
  2. Aki K and Richards P 1980 Quantitative Seismology; W H Freeman Publishers, New York, 932p.Google Scholar
  3. Archuleta R J, Cranswick E, Muellar C and Spudich P 1982 Source parameters of the 1980 Mammoth lakes, California, Earthquake sequence; J. Geophys. Res. 87 4595–4607.CrossRefGoogle Scholar
  4. Berteusen K A 1977 Moho depth determinations based on spectral ratio analysis of NORSAR long-period P waves; Phys. Earth Planet Int. 31 313–326.Google Scholar
  5. Boatwright J 1980 A spectral theory for circular seismic sources: Simple estimates of source dimension, dynamic stress drop and radiated energy; Bull. Seismol. Soc. Am. 70 1–27.Google Scholar
  6. Bouchon M 1981 A simple method to calculate Green’s functions for elastic layered media; Bull. Seismol. Soc. Am. 71 959–971.Google Scholar
  7. Brune J N 1970 Tectonic stress and the spectra of seismic shear waves from earthquakes; J. Geophys. Res. 75 4997–5009.CrossRefGoogle Scholar
  8. Chamot-Rooke N and LePichon X 1989 Zenisu ridge: Mechanical model of formation; Tectonophys. 160 175–193.CrossRefGoogle Scholar
  9. Choy G L and Boatwright J L 1995 Global patterns of radiated seismic energy and apparent stress; J. Geophys. Res. 100 18,205–18,228.CrossRefGoogle Scholar
  10. Choy L G 2011 Stress conditions inferable from modern magnitudes: Development of a model of fault maturity; In: New Manual of Seismological Observatory Practice-2 (ed.) Bormann P,  https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.5.
  11. Choy L G and McGaar A 2002 Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress; Geophys. J. Int. 150 506–523.CrossRefGoogle Scholar
  12. Choy L G, McGarr A, Kirby S H and Boatwright J 2006 An overview of the global variability in radiated energy and apparent stress; In: Earthquakes: Radiated Energy and the Physics of Faulting (eds) Abercrombie R, McGarr A, Toro G D and Kanamori H, Geophysical Monograph Series 170 43–57.Google Scholar
  13. Cohn S N, Hong T L and Helmberger D V 1982 The Oroville earthquakes: A study of source characteristics and site effects;J. Geophys. Res. 87 4585–4594.CrossRefGoogle Scholar
  14. Coutant O 1989 Program of Numerical Simulation AXITRA; Research report, Laboratoire de Ge’ophysique Interne et Tectonophysique, Grenoble.Google Scholar
  15. Dimri V P 1992 Deconvolution and inverse theory: Application to geophysical problems; Elsevier Science Publishers, Amsterdam, 230p.Google Scholar
  16. Fletcher J B 1980 Spectra from high dynamic range digital recordings of Oroville, California aftershocks and their source parameters; Bull. Seismol. Soc. Am. 70 735–755.Google Scholar
  17. Fletcher J B 1995 Source parameters and crustal Q for four earthquakes in South Carolina; Seismol. Res. Lett. 66 44–58.CrossRefGoogle Scholar
  18. Hanks T C and Kanamori H 1979 A moment magnitude scale; J. Geophys. Res. 84 2348–2350.CrossRefGoogle Scholar
  19. Kennett B L N and Engdahl E R 1991 Travel times for global earthquake location and phase identification; Geophys. J. Int. 105 429–465,  https://doi.org/10.1111/j.1365-246X.1991.tb06724.x.CrossRefGoogle Scholar
  20. Kikuchi M and Kanamori H 1991 Inversion of complex body waves, III; Bull. Seismol. Soc. Am. 81 2335–2350.Google Scholar
  21. Kohlstedt D L, Evans B and Mackwell S J 1995 Strength of the lithosphere: Constraints imposed by laboratory experiments; J. Geophys. Res. 100 17,587–17,602.CrossRefGoogle Scholar
  22. Kundu B and Gahalaut V K 2013 Tectonic geodesy revealing geodynamic complexity of the Indo-Burmese arc region, northeast India; Curr. Sci. 104(7) 920–933.Google Scholar
  23. Lahr J, Page R A and Stevens C D 1988 Unusual earthquakes in the Gulf of Alaska and fragmentation of the Pacific plate; Geophys. Res. Lett. 15 1483–1486.CrossRefGoogle Scholar
  24. Langston C A and Helmberger D V 1975 A procedure for modeling shallow dislocation sources; Geophys. J. R. Astr. Soc. 42 117–130.CrossRefGoogle Scholar
  25. Mandal P and Biswas K 2015 Teleseismic receiver function imaging of the eastern Indian shield: Evidences of age-dependent crustal thicknesses, submitted to Tectonophysics (Personal Communication).Google Scholar
  26. Mandal P and Dutta U 2011 Estimation of earthquake source parameters and site response; Bull. Seismol. Soc. Am. 101(4) 1719–1731.CrossRefGoogle Scholar
  27. Mandal P, Chadha R K, Kumar N, Raju I P and Satyamurty C 2007 Source parameters of the deadliest 8th October, 2005 Kashmir earthquake of M\(_{{\rm w}}\)7.6; Pure Appl. Geophys. 164 1963–1983.Google Scholar
  28. Martin S S and Hough S E 2015 The 21 May, 2014 M\(_{{\rm w}}\)5.9 Bay of Bengal earthquake: macroseismic data suggest a high-stress-drop event; Seismol. Res. Lett. 86 369–377,  https://doi.org/10.1785/0220140155.CrossRefGoogle Scholar
  29. Martin S S and Kakar D M 2012 The 19 January 2011 \(M_{w}\)7.2 Dalbandin earthquake, Balochistan; Bull. Seismol. Soc. Am. 102 1810–1819,  https://doi.org/10.1785/0120110221.CrossRefGoogle Scholar
  30. McKenzie D, Jackson J and Priestley K 2005 Thermal structure of oceanic and continental lithosphere; Earth Planet. Sci. Lett. 233 337–349.CrossRefGoogle Scholar
  31. Neprechnov Y P, Levchenko O V, Merklin L R and Sedov V V 1988 The structure and tectonics of the intraplate deformation area in the Indian Ocean; Tectonophys. 156 89–106.CrossRefGoogle Scholar
  32. Orowan E 1960 Mechanism of seismic faulting; Geol. Soc. Am. Mem. 79 323–345.Google Scholar
  33. Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press, New York, 345p.Google Scholar
  34. Rao G, Radhakrishna M and Murthy K 2015a A seismotectonic study of the 21 May, 2014 Bay of Bengal intraplate earthquake: Evidence of onshore–offshore tectonic linkage and fracture zone reactivation in the northern Bay of Bengal; Nat. Hazards 78 895–913.CrossRefGoogle Scholar
  35. Rao N Ch, Rao N P, Ravi Kumar M, Prasanna S and Srinagesh D 2015b Structure and tectonics of the Bay of Bengal through waveform modelling of the 21 May, 2014 earthquake of magnitude 6.0; Seismol. Res. Lett. 86 1–7,  https://doi.org/10.1785/0220140166.CrossRefGoogle Scholar
  36. Singh S K and Pacheco J F 1994 Magnitude determination of Mexican Earthquakes; Geofisica Int. 33(2) 189–198.Google Scholar
  37. Singh S K, Garcia D, Pacheco J F, Valenzuela R, Bansal B K and Dattatrayam R S 2004 Q of the Indian Shield; Bull. Seismol. Soc. Am. 94(4) 1564–1570.CrossRefGoogle Scholar
  38. Singh S K, Hjorleifsdottir V, Suresh G, Srinagesh D, Chadha R K and Perez-Campos X 2015 Bay of Bengal earthquake of 21 May, 2014 (M\(_{{\rm w}}\)6.1): Source depth and ground motions; Seismol. Res. Lett. 86,  https://doi.org/10.1785/0220140238.
  39. Sokos E N and Zahradník J 2008 ISOLA a FORTRAN code and a MATLAB GUI to perform multiple-point source inversion of seismic data; Comput. Geosci. 34 967–977.CrossRefGoogle Scholar
  40. Sokos E N and Zahradník J 2013 Evaluating Centroid–Moment–Tensor uncertainty in the new version of ISOLA software; Seismol. Res. Lett. 84(4) 656–664,  https://doi.org/10.1785/0220130002.CrossRefGoogle Scholar
  41. Tesauro M, Kaban M K and Cloetingh S A P L 2012 Global strength and elastic thickness of the lithosphere; Glob. Planet. Change 90 51–57.CrossRefGoogle Scholar
  42. Trifunac M D and Brady A G 1975 A study on the duration of strong earthquake ground motion; Bull. Seismol. Soc. Am. 65 581–626.Google Scholar
  43. Wang K, He J and Davis E E 1997 Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate; J. Geophys. Res. 102 661–674.CrossRefGoogle Scholar
  44. Wiens D 2001 Seismological constraints on the mechanism of deep earthquakes: Temperature dependence of deep earthquake source properties; Phys. Earth Planet. Int. 127 145–163.CrossRefGoogle Scholar
  45. Wells D L and Coppersmith K J 1994 New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement; Bull. Seismol. Soc. Am. 84 974–1002.Google Scholar
  46. Zahradnik J, Serpetsidaki A, Sokos E and Tselentis G A 2005 Iterative deconvolution of regional waveforms and a double-event interpretation of the 2003 Lefkada earthquake, Greece; Bull. Seismol. Soc. Am. 95(1) 159–172.CrossRefGoogle Scholar
  47. Zuniga F R 1993 Frictional overshoot and partial stress drop, which one?; Bull. Seismol. Soc. Am. 83 939–944.Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Prantik Mandal
    • 1
    Email author
  • Koushik Biswas
    • 1
  • Akhileshwar Prasad
    • 1
  1. 1.CSIR – National Geophysical Research InstituteHyderabadIndia

Personalised recommendations