Advertisement

Palaeocene–Eocene carbon isotopic excursion from the shallow-marine-carbonate sequence of northeast India: Implications on the CIE magnitude and geometry

  • Sruthi P Sreenivasan
  • Melinda Kumar Bera
  • Arpita Samanta
  • Ravikant Vadlamani
Article

Abstract

The exact magnitude of the carbon isotopic excursion (CIE) for the Palaeocene–Eocene Thermal Maximum (PETM) is essential for our understanding of the carbon cycle perturbation. Global compilation of the PETM CIE magnitudes indicates that the shallow-marine inorganic carbonate could be a potential candidate to decipher the actual CIE magnitude. The present study, therefore, made an attempt to explore the thick Palaeogene shallow-marine carbonate sequence of the Sylhet Limestone exposed in the Jaintia Hills of northeast (NE) India, in terms of the preservation and magnitude of the PETM CIE. Exploratory sampling carried out across the Sylhet Limestone suggests that this sequence was deposited during the Late Palaeocene and Early Eocene, as evident from the age-diagnostic foraminifera. The observed \({\sim }3.4\permille \) CIE at the top of the Lakadong Limestone, resting above the Miscellanea miscella and Ranikothalia nuttalli foraminifera-bearing horizon, can, therefore, be correlated with the PETM CIE. Although the magnitude of the CIE from our limited data set agrees well with the global compilation, the absence of a stepped profile questions the preservation of the CIE reported elsewhere from the Tethyan sequence. Further work is needed for a better understanding of the PETM interval in NE India.

Keywords

Palaeocene–Eocene thermal maximum carbon isotope excursion NE India marine carbonate Sylhet Limestone 

Notes

Acknowledgements

MKB thanks IIT Kharagpur for funding the fieldwork through its Professional Development Fund. This work forms part of the Ph.D. thesis of SPS, who thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the fellowship. We thank IIT Kharagpur for funding the Stable Isotope Analytical Facility through its Diamond Jubilee Laboratories Grant where all isotope data used in this work were generated. The paper is a result of a pre-decision effort in connection with a prospective research grant proposal on identifiable PETM section in the Jaintia Hills for submission to MoES. The authors acknowledge the help extended by the Star Cement authority, particularly by H R Singh and A J Singh.

Supplementary material

12040_2018_1018_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (doc 68 KB)

References

  1. Aubry M P 2000 Where should the global stratotype section and point (GSSP) for the Paleocene/Eocene boundary be located?; B. Soc. Geol. Fr. 171 461–476.CrossRefGoogle Scholar
  2. Banner J L and Hanson G N 1990 Calculation of simultaneous isotopic and trace element variations during water–rock interaction with applications to carbonate diagenesis; Geochim. Cosmochim. Acta 54 3123–3137.CrossRefGoogle Scholar
  3. Bera M K, Sarkar A, Chakraborty P P, Ravikant V and Choudhury A K 2010 Forced regressive shoreface sandstone from Himalayan foreland: Implications to early Himalayan tectonic evolution; Sedim. Geol. 229 268–281.CrossRefGoogle Scholar
  4. Cannon J, Lau E and Müller R D 2014 Plate tectonic raster reconstruction in G Plates; Solid Earth 5 741–755,  https://doi.org/10.5194/se-5-741-2014. CrossRefGoogle Scholar
  5. Cui Y, Kump L R, Ridgwell A J, Charles A J, Junium C K, Diefendorf A F, Freeman K H, Urban N M and Harding I C 2011 Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum; Nat. Geosci. 4 481–485.CrossRefGoogle Scholar
  6. d’Archiac A and Haime J 1853 Description des animaux fossiles du groupe nummulitique des Indes, précédée d’un résumé géologique et d’une monographie des Nummulites; Gide & Baudry, Paris, 373p.Google Scholar
  7. Davies A M 1927 Lower Miocene Foraminifera from Pemba Island; Stockley GM Report on the Palaeontology of the Zanzibar Protectorate, pp. 7–12.Google Scholar
  8. DeConto R M, Galeotti S, Pagani M, Tracy D, Schaefer K, Zhang T, Pollard D and Beerling D J 2012 Past extreme warming events linked to massive carbon release from thawing permafrost; Nature 484 87.CrossRefGoogle Scholar
  9. Dickens G R, O’Neil J R, Rea D K and Owen R M 1995 Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene; Paleoceanography 10 965–971.CrossRefGoogle Scholar
  10. Diefendorf A F, Mueller K E, Wing S L, Koch P L and Freeman K H 2010 Global patterns in leaf \(^{13}\)C discrimination and implications for studies of past and future climate; Proc. Nat. Acad. Sci. 107 5738–5743.CrossRefGoogle Scholar
  11. Dutta S K and Jain K P 1980 Geology and palynology of the area around Lumshnong, Jaintia Hills, Meghalaya, India; Biol. Memoirs 5(1) 56–81.Google Scholar
  12. Friedman I and O’Neil J R 1977 Data of geochemistry: Compilation of stable isotope fractionation factors of geochemical interest; US Government Printing Office.Google Scholar
  13. Geological Survey of India 2009 Geology and mineral resources of Assam and Meghalaya; Geol. Surv. India Misc. Publ., No. 30, Part IV, Vol. 2, (i) Assam and (ii) Meghalaya, 44p & 46p.Google Scholar
  14. Geological Survey of India 2011 Geology and mineral resources of Manipur, Mizoram, Nagaland and Tripura; Geol. Surv. India Misc. Publ., No. 30, Part IV, Vol. 1 (Part 2), 96p.Google Scholar
  15. Gogoi B, Deka Kalita K, Garg R and Borgohain R 2009 Foraminiferal biostratigraphy and palaeoenvironment of the Lakadong Limestone of the Mawsynram area, South Shillong Plateau, Meghalaya; J. Palaeontol. Soc. India 54 209–224.Google Scholar
  16. Höntzsch S, Scheibner C, Kuss J, Marzouk A M and Rasser M W 2011 Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: The Lower Eocene succession of the Galala Mountains, Egypt; Facies 57 51–72.CrossRefGoogle Scholar
  17. Hottinger L 1997 Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations; B. Soc. Geol. 168 491–505.Google Scholar
  18. Huber M, Sloan L and Shellito C 2003 Early Paleogene oceans and climate: A fully coupled modelling approach using the NCAR CCSM; In: Causes and consequences of globally warm climates in the Early Paleogene (eds) Wing S L, Gingerich P D, Schmitz B and Thomas E, Boulder Colorado Geol. Soc. Am. Spec. Paper 369 25–47.Google Scholar
  19. Ivany L C, Lohmann K C, Hasiuk F, Blake D B, Glass A, Aronson R B and Moody R M 2008 Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica; Geol. Soc. Am. Bull. 120 659–678.CrossRefGoogle Scholar
  20. Jauhri A K and Agarwal K K 2001 Early Palaeogene in the south Shillong Plateau, NE India: Local biostratigraphic signals of global tectonic and oceanic changes; Palaeogeogr. Palaeoclimatol. Palaeoecol. 168 187–203.CrossRefGoogle Scholar
  21. Jauhri A K, Misra P K, Kishore S and Singh S K 2006 Larger foraminiferal and calcareous algal facies in the Lakadong Formation of the South Shillong Plateau, NE India; J. Palaeontol. Soc. India 51 51–61.Google Scholar
  22. Kahsnitz M M and Willems H 2017 Genesis of Paleocene and Lower Eocene shallow-water nodular limestone of South Tibet (China); Carbonate Evaporate,  https://doi.org/10.1007/s13146-017-0360-7.
  23. Kalita K D and Gogoi H 2015 Microfacies types (MFT) and palaeoenvironment of the Umlatodh carbonates in the Shillong Plateau of Meghalaya, NE India; J. Geol. Soc. India 85 686–696.CrossRefGoogle Scholar
  24. Kennett J P and Stott L D 1991 Abrupt deep sea warming, paleooceanographic changes and benthic extinctions at the end of the Paleocene; Nature 353 225–229.CrossRefGoogle Scholar
  25. Kim S T, Mucci A and Taylor B E 2007 Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75\(^\circ \)C: revisited; Chem. Geol. 246 135–146.CrossRefGoogle Scholar
  26. Li J, Hu X, Garzanti E and BouDagher-Fadel M 2017 Shallow-water carbonate responses to the Paleocene–Eocene thermal maximum in the Tethyan Himalaya (southern Tibet): Tectonic and climatic implications; Palaeogeogr. Palaeoclimatol. Palaeoecol. 466 153–165.CrossRefGoogle Scholar
  27. Matsumaru K and Sarma A 2010 Larger foraminiferal bio-stratigraphy of the lower Tertiary of Jaintia Hills, Meghalaya, NE India; Micropaleontology 56 539–565.Google Scholar
  28. McInerney F A and Wing S L 2011 The Paleocene–Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future; Ann. Rev. Earth. Plan. Sci. 39 489–516.CrossRefGoogle Scholar
  29. Mehrotra K K and Banerji R K 1973 Middle-upper Eocene biostratigraphy of Khasi and Jaintia Hills based on planktonic and larger foraminifera; J. Palaeontol. Soc. India 18 22–26.Google Scholar
  30. Misra P K, Jauhri A K, Kishore S and Singh S K 2002 Calcareous algae from the Lakadong Formation of the south Shillong Plateau; Rev. Paleobiol. 21 717–734.Google Scholar
  31. Nagappa Y 1959 Foraminiferal biostratigraphy of the cretaceous: Eocene succession in the India–Pakistan–Burma region; Micropaleontology 5 145–192.CrossRefGoogle Scholar
  32. Prasad V A, Garg R A, Khowaja-Ateequzzaman S I and Joachimski M 2006 Apectodinium acme and the palynofacies characteristics in the latest Palaeocene-earliest Eocene of northeastern India: Biotic response to Palaeocene–Eocene thermal maxima (PETM) in low latitude; J. Palaeontol. Soc. India 51 75–91.Google Scholar
  33. Röhl U, Westerhold T, Bralower T J and Zachos J C 2007 On the duration of the Paleocene–Eocene thermal maximum (PETM); Geochem. Geophys. Geosyst. 8 1–13.CrossRefGoogle Scholar
  34. Rosenbaum J and Sheppard S M 1986 An isotopic study of siderites, dolomites and ankerites at high temperatures; Geochim. Cosmochim. Acta 50 1147–1150.CrossRefGoogle Scholar
  35. Samanta B K 1968 Nummulites (foraminifera) from the Upper Eocene Kopili Formation of Assam, India; Palaeontology 11 669–682.Google Scholar
  36. Samanta B K 1971 Early Tertiary stratigraphy of the area around Garampani, Mikir-north Cachar hills, Assam; Geol. Soc. India 12 318–327.Google Scholar
  37. Sluijs A and Dickens G R 2012 Assessing offsets between the \(\updelta ^{13}{\!\!\text{ C }}\) of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations; Global Biogeochem. Cy. 26 1–14.CrossRefGoogle Scholar
  38. Vadlamani R, Wu F Y and Ji W Q 2015 Detrital zircon U–Pb age and Hf isotopic composition from foreland sediments of the Assam Basin, NE India: Constraints on sediment provenance and tectonics of the Eastern Himalaya; J. Asian. Earth. Sci. 111 254–267.CrossRefGoogle Scholar
  39. Vasconcelos C, McKenzie J A, Warthmann R and Bernasconi S M 2005 Calibration of the \(\updelta ^{18}\) \(\text{ O }\) paleothermometer for dolomite precipitated in microbial cultures and natural environments; Geology 33 317–320.CrossRefGoogle Scholar
  40. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A, Diener A, Ebneth S, Godderis Y and Jasper T 1999 \(^{87}\text{ Sr }/^{86}\text{ Sr }\), \(\updelta ^{13}\text{ C }\) and \(\updelta ^{18}\text{ O }\) evolution of Phanerozoic seawater; Chem. Geol. 161 59–88.CrossRefGoogle Scholar
  41. Westerhold T, Röhl U, Wilkens R, Gingerich P D, Clyde W, Wing S, Bowen G and Kraus M 2017 Synchronizing early Eocene deep-sea and continental records – New cyclostratigraphic age models from the Bighorn Basin Coring Project; Clim. Past Discuss.,  https://doi.org/10.5194/cp-2017-74.
  42. Willems H, Zhou Z, Zhang B G and Gräfe K U 1996 Stratigraphy of the Upper Cretaceous and lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China); Geol. Rundsch. 85 723–754.CrossRefGoogle Scholar
  43. Zachos J, Pagani M, Sloan L, Thomas E and Billups K 2001 Trends, rhythms, and aberrations in global climate 65 Ma to present; Science 292 686–693.CrossRefGoogle Scholar
  44. Zhang Q, Willems H and Ding L 2013 Evolution of the Paleocene–Early Eocene larger benthic foraminifera in the Tethyan Himalaya of Tibet, China; Int. J. Earth. Sci. 102 1427–1445.CrossRefGoogle Scholar
  45. Zhang Q, Wendler I, Xu X, Willems H and Ding L 2017 Structure and magnitude of the carbon isotope excursion during the Paleocene–Eocene thermal maximum; Gondwana. Res. 46 114–123.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of GeologyAsutosh CollegeKolkataIndia

Personalised recommendations