Advertisement

Observations on the ichnospecies Monomorphichnus multilineatus from the Nagaur Sandstone (Cambrian Series 2-Stage 4), Marwar Supergroup, India

Article
  • 36 Downloads

Abstract

The Ediacaran–Cambrian Marwar Supergroup exposed in the western Rajasthan, India yielded abundant sigmoidal scratches assigned to ichnospecies Monomorphichnus multilineatus from the Nagaur Sandstone belonging to the Cambrian (Series 2-Stage 4). Nagaur M. multilineatus are recorded from the intertidal regime. It is an addition to already known depositional environments for this ichnospecies, which are known from shallow marine, wave-dominated, to non-marine or brackish water and storm-dominated sequences. Classical systematics of M. multilineatus is enriched with additional information in the paper. Its significance has been discussed regarding the palaeoecology of trace producers. Comprehensive statistical analyses help reveal its behaviour and feeding pattern of the causative organism of M. multilineatus. Hierarchical Cluster Analysis (HCA), average linkage and Pearson Correlation were performed to establish the natural grouping and behaviour of the specimens. HCA indicates that the studied Nagaur specimens belong to ichnogenera Monomorphicnus and ichnospecies, i.e., multilineatus. Pearson correlation, involving thickness and length of individual specimen, was positive. It indicates that the amount of food required by individual adult specimen was more and thereby requiring more grazing to provide enough food for survival. All the known occurrences of M. multilineatus are reviewed in the present study for their mode of preservation, depositional environment, palaeoecology and taphonomy.

Keywords

Monomorphichnus multilineatus Kodymirus Nagaur Sandstone Marwar Supergroup India 

Notes

Acknowledgements

We are thankful to the anonymous reviewer and Prof. Nigel Hughes for very constructive suggestions offered on the earlier version of the manuscript. Mukund is indebted to Late Prof. B S Paliwal, JNV University for introducing the area and greatly benefited by the geological experience of Prof. Paliwal, and Late Dr R L Jain of the Geological Survey of India. Discussions with Profs. Nigel Hughes, Sören Jensen, S Kumar, M K Pandit, D K Pandey and S K Mathur helped us improve our arguments. We are grateful to the people of Dulmera village for allowing us access their lease areas and collect samples and data for this study for many years. The authors are thankful to Prof. Sunil Bajpai, Director, Birbal Sahni Institute of Palaeosciences, for extending the facilities to carry out the investigations and permission to publish this work (RDCC/2017-18/4).

Supplementary material

12040_2018_973_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (doc 40 KB)
12040_2018_973_MOESM2_ESM.doc (42 kb)
Supplementary material 2 (doc 42 KB)
12040_2018_973_MOESM3_ESM.doc (49 kb)
Supplementary material 3 (doc 49 KB)

References

  1. Aceñolaza G F and Tortello M F 2003 El Alisal: A new locality with trace fossils of the Puncoviscana Formation (late Precambrian–early Cambrian) in Salta Province, Argentina; Geol. Acta 1(1) 95–102.Google Scholar
  2. Ahmad S and Kumar S 2014 Trace fossil assemblage from the Nagaur Group, Western India; J. Palaeontol. Soc. India 59(2) 231–246.Google Scholar
  3. Alpert S P 1976 Planolites  and Skolithos from the Upper Precambrian–Lower Cambrian White-Inyo mountains, California; J. Paleontol. 49(3) 508–521.Google Scholar
  4. Ansari A H, Pandey S K, Sharma Mukund, Agrawal Shailesh and Kumar Yogesh 2018 Carbon and oxygen isotope stratigraphy of the Ediacaran Bilara Group, Marwar Supergroup, India: Evidence for high amplitude carbon isotopic negative excursions; Precamb. Res. 308 75–91.Google Scholar
  5. Babu R, Singh V K and Shukla M 2009 Cryptic bioentities with their significance from the Gotan Formation of Bilara Group, Marwar Supergroup, Rajasthan; Curr. Sci. 96(12) 1575–1577.Google Scholar
  6. Barman G 1980 An analysis of the Marwar Basin, western Rajasthan, in the light of stromatolite study; Geol. Surv. India Misc. Publ. 44 292–297.Google Scholar
  7. Barman G 1987 Stratigraphical position of the Marwar Supergroup in the light of stromatolite study; Geol. Surv. India Spec. Publ. 11 72–80.Google Scholar
  8. Behrensmeyer A K and Kidwell S M 1985 Taphonomy’s contributions to palaeobiology; Palaeob11 105–119.Google Scholar
  9. Bergström J 1973 Organization, life, and systematics of trilobites; Fossils and Strata 2 69p.Google Scholar
  10. Bhargava O N 1984 Trace fossil from the Cambrian Tal Group, Sirmaur district, H.P. and proposed redefinition of the Tal; J. Palaeontol. Soc. India 29 84–87.Google Scholar
  11. Bhatt D K, Prasad S and Jain R L 2002 Geological nature of the Pokaran Boulder Bed; palaeoenvironmental, palaeoclimatic and stratigraphic implications: Discussion and reply; J. Geol. Soc. India 60(3) 353–355.Google Scholar
  12. Bose P K, Eriksson P G, Sarkar S, Wright D T, Samanta P, Mukhopadhyay S, Mandal S, Banerjee S and Altermann W 2012 Sedimentation patterns during the Precambrian: A unique record?; Mar. Petrol. Geol33 34–68.Google Scholar
  13. Boucot A J 1981 Principles of Benthic Marine Paleoecology; New York, Academic Press, 463p.Google Scholar
  14. Chauhan D S and Bhanwara R 1999 Ripple marks and synthesis of beach sequences: A study of early Palaeozoic sandstone of Jodhpur Group, Western Rajasthan; In: Geological Evolution of Western India (ed.) Paliwal B S, Scientific Publisher, Jodhpur, pp. 66–78.Google Scholar
  15. Chauhan D S, Bhanwara R and Narayanan R 2004 Jodhpur sandstone: A gift of ancient beaches to Western Rajasthan; J. Geol. Soc. India 64 265–276.Google Scholar
  16. Chlupáč I and Havlíček I 1965 Kodymirus n.g., a new aglaspid merostome of the Cambrian of Bohemia; Sb. Geol. Věd. Paleontol. 6 7–20.Google Scholar
  17. Crimes T P 1970 Trilobite tracks and other fossils from the upper Cambrian of North Wales; Geol. J. 7(1) 47–68.Google Scholar
  18. Crimes T P 1977 Trace fossils of Eocene deep-sea sand fan, northern Spain; In: Trace fossils 2 (eds) Crimes T P and Harper J C, Geol. J. (Spec. Issue) 9 71–90.Google Scholar
  19. Davis J K, Meert J G and Pandit M K 2014 Paleomagnetic analysis of the Marwar Supergroup, Rajasthan, India and proposed interbasinal correlations; J. Asian Earth Sci. 91 339–351.Google Scholar
  20. Desai B G, Shukla R and Saklani R D 2010 Ichnology of the Early Cambrian Tal Group, Nigalidhar Syncline, Lesser Himalaya India; Ichnos 17 233–245.Google Scholar
  21. Ekdale A A, Bromley R G and Pemberton S G 1984 Ichnology: The use of trace fossils in sedimentology and stratigraphy: Society of Economic Palaeontologists and Mineralogists short course no. 15 317p.Google Scholar
  22. Erwin D H, Laflamme M, Tweedt S M, Sperling E A, Pisani D and Peterson K J 2011 The Cambrian conundrum: Early divergence and later ecological success in the early history of animals; Science 334(6059) 1091–1097.Google Scholar
  23. Fillion D and Pickerill R K 1990 Ichnology of the Upper Cambrian to Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland, Canada; Palaeontogr. Canad. 7 1–119.Google Scholar
  24. Gehling J G and Rigby J K 1996 Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia; J. Paleontol. 70(2) 185–195.Google Scholar
  25. George B G and Ray J S 2017 Provenance of sediments in the Marwar Supergroup, Rajasthan, India: Implications for basin evolution and Neoproterozoic global events; J. Asian Earth Sci. 147 254–270.Google Scholar
  26. Gibb S, Brian D E, Chatterton and Pemberton S G 2009 Arthropod ichnofossils from the Ordovician Stairway Sandstone of central Australia; Mem. Assoc. Austr. Palaeontol. 37 695–716.Google Scholar
  27. Gregory L C, Meert J G, Bingen G, Pandit M K and Torsvik T H 2009 Paleomagnetism and geochronology of the Malani Igneous Suite, Northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana; Precamb. Res. 170 13–26.Google Scholar
  28. Hofmann R, Mángano M G, Elicki O and Shinaq R 2012 Paleoecologic and biostratigraphic significance of trace Fossils from shallow- to marginal-marine environments from the middle Cambrian (Stage 5) of Jordan; J. Paleontol. 86(6) 931–955.Google Scholar
  29. Hu Bin and Wu Xian-Tao 1993 Ichnofossils of Alluvial Jiaguan Formation (Upper Cretaceous), Emei, Sichuan, China; Acta Palaeontol. Sin. 32(4) 478–489.Google Scholar
  30. Hughes N C 2016 The Cambrian palaeontological record of the Indian subcontinent; Earth Sci. Rev. 159 428–461.Google Scholar
  31. Hughes N C, Myrow P M, McKenzie N R, Xiao S H, Banerjee D M and Tang Q 2015 Age and implications of the phosphatic Birmania Formation, Rajasthan, India; Precamb. Res. 267 164–173.Google Scholar
  32. Kaufman L and Rousseeuw P J 2009 Finding groups in data: An introduction to cluster analysis; John Wiley and Sons, 344p.Google Scholar
  33. Keighley D G and Pickerill R K 1998 Mudstone-clastiform conglomerates and trough-shaped depressions from the Pennsylvanian lower Port Hood Formation of eastern Canada: Occurrences due to soft-sediment deformation; J. Sedim. Res. 68 901–912.Google Scholar
  34. Khan E A 1973 Discovery of fossil brachiopod of Cambrian affinity from Trans Aravalli Vindhyan sequence, near Jodhpur, Rajasthan; Seminar on Recent advances in the geology of Rajasthan and Gujarat; Abstract, pp. 74–75.Google Scholar
  35. Khilnani V B 1964 A note on the occurrence of algal stromatolites in the Vindhyan limestone from Bilara area, Jodhpur district, Rajasthan; Curr. Sci. 33(24) 750–751.Google Scholar
  36. Khilnani V B 1968 Stromatolites of Vindhyan Limestone, from Bilara, district Jodhpur, Rajasthan; Quart. J. Geol. Min. Met. Soc. India 40(1) 1–6.Google Scholar
  37. Knoll A H and Carroll S B 1999 Early animal evolution: Emerging views from comparative biology and geology; Science 284(5423) 2129–2137.Google Scholar
  38. Kumar S and Ahmad S 2012a Restudy of an Ediacaran medusoid Marsonia artiyansis from the Jodhpur Sandstone, Jodhpur district, western Rajasthan; J. Palaeontol. Soc. India 57(2) 135–142.Google Scholar
  39. Kumar S and Ahmad S 2012b Five-armed body fossil from the Ediacaran Jodhpur Sandstone, Marwar Supergroup, western Rajasthan, India: A possible precursor of phylum Echinodermata; Curr. Sci. 102(1) 24–26.Google Scholar
  40. Kumar S and Ahmad S 2014 Microbially induced sedimentary structures (MISS) from the Ediacaran Jodhpur Sandstone, Marwar Supergroup, western Rajasthan; J. Asian Earth Sci. 91 352–361.Google Scholar
  41. Kumar S and Ahmad S 2016 Problematic structures from the Ediacaran Jodhpur Sandstone, Rajasthan, India and their possible affinity; J. Palaeontol. Soc. India  61(1) 63–73.Google Scholar
  42. Kumar S and Pandey S K 2008 Discovery of trilobite trace fossils from the Nagaur Sandstone, the Marwar Supergroup, Dulmera area, District Bikaner, Rajasthan; Curr. Sci.  94 1081–1085.Google Scholar
  43. Kumar S and Pandey S K 2009 Note on the occurrence of Arumberia banksi and associated fossils from the Jodhpur Sandstone, Marwar Supergroup, western Rajasthan; J. Palaeontol. Soc. India  54(2) 171–178.Google Scholar
  44. Kumar S and Pandey S K 2010 Trace fossils from the Nagaur Sandstone, Marwar Supergroup, Dulmera area, Bikaner district, Rajasthan, India; J. Asian Earth Sci.  38 77–85.Google Scholar
  45. Kumar S, Misra P K and Pandey S K 2009 Ediacaran megaplant fossils with Voucheriacean affinity from the Jodhpur Sandstone, Marwar Supergroup, western Rajasthan; Curr. Sci.  97(5) 701–705.Google Scholar
  46. Kumar V, Rastogi S P, Chandra R 2005 Geology and evolution of Nagaur–Ganganagar Basin with special reference to salt and potash mineralization; Spec. Publ. Series Geol. Surv. India 62 1–151.Google Scholar
  47. Lamsdell J C, Stein M and Selden P A 2013 Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods; Naturwissenschaften  100 811–825.Google Scholar
  48. Lucas S G, Minter N J, Spielmann J A, Hunt A P and Braddy S J 2005 Early Permian Ichnofossil assemblage from the Fra Cristobal Mountains, southern New Mexico; In: The Permian of Central New Mexico (eds) Lucas S G, Zeigler K E and Spielmann J, New Mexico Mus. Nat. Hist. Sci. Bull. 31 140–150.Google Scholar
  49. MacNaughton R B and Narbonne G M 1999 Evolution and ecology of Neoproterozoic–Lower Cambrian trace fossils, NW Canada; Palaios  14 97–115.Google Scholar
  50. Maheshwari A, Sial A N and Mathur S C 2003 Carbon and oxygen isotope profiles from the terminal Pre-Cambrian Marwar Supergroup, Rajasthan, India; Carbonate Evaporite  18(1) 268–276.Google Scholar
  51. Maithy P K 1984 Microbiota from stromatolite stratifera of Bilara Group (Marwar Supergroup, western Rajasthan); Palaeobotanist  32 82–85.Google Scholar
  52. Maloof A C, Rose C V, Beach R, Samuels B M, Calmet C C, Erwin D H, Poirier G R, Yao N and Simons F J 2010 Possible animal-body fossils in pre-Marinoan limestones from South Australia; Nat. Geosci. 3 653–659.Google Scholar
  53. Mángano M G and Buatois L A 2003 Trace fossils; In: Ordovician Fossils of Argentina (ed.) Benedetto J L, Universidad Nacional de Córdoba, Secretaría de Cienciay Tecnología, pp. 507–553.Google Scholar
  54. Mángano M G, Buatois L A and Aceñolaza G F 1996 Trace fossils and sedimentary facies from an Early Ordovician tide-dominated shelf (Santa Rosita Formation, northwest Argentina): Implications for ichnofacies models of shallow marine successions; Ichnos  5 53–88.Google Scholar
  55. Mángano M G, Buatois L A and Fernando M G 2005 Ichnology of the Alfarcito Member (Santa Rosita Formation) of north-western Argentina: Animal-substrate interactions in a lower Paleozoic wave-dominated shallow sea; Ameghiniana  42(4) 641–668.Google Scholar
  56. Martin R E 1999 Taphonomy a process approach; Cambridge University Press, Cambridge, 508p.Google Scholar
  57. Mazumdar A and Bhattacharya S K 2004 Stable isotopic study of late Neoproterozoic–early Cambrian (?) sediments from Nagaur–Ganganagar basin, western India: Possible signatures of global and regional C-isotope events; Geochem. J.  38 163–175.Google Scholar
  58. Mazumdar A and Strauss H 2006 Sulfur and strontium isotopic compositions of carbonate and evaporate rocks from the Late Neoproterozoic–early Cambrian Bilara Group (Nagaur–Ganganagar Basin, India): Constrains on intrabasinal correlation and global sulfur cycle; Precamb. Res. 149 217–230.Google Scholar
  59. McKenzie N R 2012 Integrated geochronologic, geochemical, and sedimentological investigation of Proterozoic Early Paleozoic Strata: From northern India to global perspectives (Ph.D. Thesis); University of California, Riverside, USA, 131p.Google Scholar
  60. McKenzie N R, Hughes N C, Myrow P M, Xiao S and Sharma M 2011 Correlation of Precambrian–Cambrian sedimentary successions across northern India and the utility of isotopic signatures of Himalayan lithotectonic zones; Earth Planet. Sci. Lett. 312 471–483.Google Scholar
  61. McMenamin M A S 1986 The Garden of Ediacara; Palaios  1 178–182.Google Scholar
  62. Meert J G and Pandit M K 2015 The Archaean and Proterozoic history of Peninsular India: Tectonic framework for Precambrian sedimentary basins in India; In: Precambrian basins of India: Stratigraphic and tectonic context (eds) Mazumder R and Eriksson P G, Mem. Geol. Soc. London  43 29–54.Google Scholar
  63. Meert J G, Pandit M K and Kamenov G D 2013 Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India; Tectonophys. 608 1254–1267.Google Scholar
  64. Mehrotra N C, Babu R, Tewari R, Jha N, Kumar P, Singh V K and Shukla M 2008 New global opportunities for hydrocarbon exploration in Neoproterozoic Basins of Indian subcontinent; J. Geol. Soc. India  72 543–546.Google Scholar
  65. Mikuláš R 1995 Trace fossils from the Paseky Shale (Early Cambrian, Czech Republic); J. Czech Geol. Soc.  40 37–45.Google Scholar
  66. Minter N J and Lucas S G 2009 The arthropod trace fossil Cruziana and associated Ichnotaxa from the Lower Permian Abo Formation, Socorro County, New Mexico; New Mexico Geol. Soc. Guidebook, 60th Field conference, Geology of the Chupadera Mesa Region, pp. 291–298.Google Scholar
  67. Paliwal B S 2007 Some fossil like structures in the rocks of the Marwar Supergroup, western Rajasthan, India; In: Emerging trends of research in Geology (north western India) (eds) Avidich P C and Bhu H, Department of Geology, Mohan Lal Sukhadia University, Udaipur, India, pp. 1–19.Google Scholar
  68. Pandey D K and Bahadur T 2009 A review of the strati-graphy of Marwar Supergroup of west-central Rajasthan; J. Geol. Soc. India  73 747–758.Google Scholar
  69. Pandey D K, Uchman A, Kumar V and Shekhawat R S 2014 Cambrian trace fossils of the Cruziana ichnofacies from the Bikaner–Nagaur Basin, north western Indian Craton; J. Asian Earth Sci.  81 129–141.Google Scholar
  70. Pandey S K and Sharma M 2017 Enigmatic Ediacaran megascopic bedding plane structures on the Sonia Sandstone, Jodhpur Group, Marwar Supergroup, India: Seaweed or problematica?; Geol. J.  52 784–807.Google Scholar
  71. Pandit M K, Sial A N, Jamrani S S and Ferreira V P 2001 Carbon isotope profile across the Bilara Group rocks of Trans-Aravalli Marwar Supergroup in western India: Implications for Neoproterozoic–Cambrian transition; Gondwana Res. 4 387–394.Google Scholar
  72. Parcha S K and Pandey S 2011 Ichnofossils and their significance in the Cambrian successions of the Parahio Valley in the Spiti Basin, Tethys Himalaya, India; J. Asian Earth Sci.  42 1097–1116.Google Scholar
  73. Parcha S K and Singh B P 2010 Stratigraphic significance of the Cambrian Ichnofauna of the Zanskar Region, Ladakh Himalaya, India; J. Geol. Soc. India  75 503–517.Google Scholar
  74. Pareek H S 1984 Pre-Quaternary geology and mineral resources of northwestern Rajasthan; Geol. Survey India Memoir 115 1–95.Google Scholar
  75. Parihar V S, Gaur V and Nama S L 2012 Trace fossils and microbial mat-induced sedimentary structures from the Girbhakar Sandstone of Marwar Supergroup, Bhopalgarh area, Jodhpur, Rajasthan, India; J. Earth Sci. Climatic Change  12(2) 1–3.Google Scholar
  76. Peng S, Babcock L E and Cooper R A 2012 The Cambrian Period; In: The Geological Time Scale 2012 (eds) Gradstein F, Ogg J, Schmitz M and Ogg G, Elsevier 1 437–488.Google Scholar
  77. Poiré D G, Spalletti L A and Valle A D 2003 The Cambrian–Ordovician siliciclastic platform of the Balcarce Formation (Tandilia System, Argentina): Facies, trace fossils, palaeoenvironments and sequence stratigraphy; Geol. Acta  1(1) 41–60.Google Scholar
  78. Prasad B, Asher R and Borgohai B 2010 Late Neoproterozoic (Ediacaran)–Early Paleozoic (Cambrian) acritarchs from the Marwar Supergroup, Bikaner–Nagaur Basin, Rajasthan; J. Geol. Soc. India  75 415–431.Google Scholar
  79. Raghav K S, De C and Jain R L 2005 The first record of Vendian Medusoids and trace fossils bearing algal mat grounds from the basal part of the Marwar Supergroup of Rajasthan, India; Indian Min. 59(1–2) 23–30.Google Scholar
  80. Reineck H E and Singh I B 1980 Depositional Sedimentary Environments; Springer-Verlag: Berlin, 551p.Google Scholar
  81. Samanta P, Mukhopadhyay S, Mandal A and Sarkar S 2011 Microbial mat structures in profile: The Neoproterozoic Sonia Sandstone, Rajasthan, India; J. Asian Earth Sci.  40 542–549.Google Scholar
  82. Samanta P, Mukhopadhyay S, Sarkar S and Eriksson P G 2015 Neoproterozoic substrate condition vis-à-vis microbial mat structure and its implications: Sonia Sandstone, Rajasthan, India; J. Asian Earth Sci.  106 186–196.Google Scholar
  83. Sarkar S, Banerjee S, Eriksson P G and Catuneanu O 2005 Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India; Sedim. Geol.  176 195–209.Google Scholar
  84. Sarkar S, Banerjee S, Samanta P, Chakraborty N, Chakraborty P P, Mukhopadhyay S and Singh A K 2014 Microbial mat records in siliciclastic rocks: Examples from Four Indian Proterozoic basins and their modern equivalents in Gulf of Cambay; J. Asian Earth Sci.  91 362–273.Google Scholar
  85. Sarkar S, Bose P K, Samanta P, Sengupta P and Eriksson P G 2008 Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation; Precamb. Res. 162 248–263.Google Scholar
  86. Sarkar S, Samanta P, Mukhopadhyay S and Bose P K 2012 Stratigraphic architecture of the Sonia Fluvial interval, India in its Precambrian context; Precamb. Res. 214215 210–226.Google Scholar
  87. Schopf J W, Kudryavtsev A B, Agresti D G, Czaja A D and Wdowiak T J 2005 Raman imagery: A new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils; Astrobiology  5 333–371.Google Scholar
  88. Seilacher A 1990 Paleozoic trace fossils; In: The geology of Egypt (ed.) Said R, Balkema A A, Rotterdam, pp. 649–670.Google Scholar
  89. Shah S K and Sudan C S 1983 Trace fossils from the Cambrian of Kashmir and their stratigraphic significance; J. Geol. Soc. India  24 194–202.Google Scholar
  90. Sharma M and Pandey S K 2011 Fossil lagerstättens and an age assessment of the Nagaur Sandstone, Marwar Supergroup. XXIII Indian Colloquim on ‘Micropalaeontology and Stratigraphy (ICMS) and International Symposium on Global Bioevents in the Earth History’, XXIII ICMS-64, 82.Google Scholar
  91. Sharma M and Shukla Y 2012 Mesoproterozoic carbonaceous fossils from the Neoproterozoic Bhima Basin, Karnataka, South India; Geol. Soc. London  Spec. Publ.  366 277–293.Google Scholar
  92. Sharma M, Ahmad S, Pandey S K and Kumar K 2018 Behavioral and taphonomical testimony of Treptichnus pedum, inferences from the Nagaur Sandstone, Marwar Supergroup, India; Bull. Geosci.,  https://doi.org/10.3140/bull.geosci.1666.Google Scholar
  93. Shrivastava B P 1971 Rock stratigraphic nomenclature for the sedimentaries of west-central Rajasthan; Geol. Mining Metallur. Soc. India 44 1–19.Google Scholar
  94. Shrivastava B P 2005 Introductory treatise on geology of sedimentary basins and oil, gas and lignite scenario of western Rajasthan; In: Proceedings of National Seminar on Oil, Gas and Lignite Scenario with Special Reference to Rajasthan  (eds) Shrivastava B P and Mathur A, pp. 17–31.Google Scholar
  95. Singh B P, Bhargava O N, Chaubey R S and Kishore N 2014 Echnology and depositional environment of the Cambrian Nagaur Sandstone (Nagaur Group) along the Dulmera section, Bikaner Nagaur Basin, Rajasthan; Acta Geol. Sin-Engl.  88(6) 1665–1680.Google Scholar
  96. Singh B P, Bhargava O N, Kishore N, Ahluwalia A D and Chuabey R S 2013 Arthropod from the Bikaner–Nagaur Basin, peninsular India; Curr. Sci. 104(6) 706–707.Google Scholar
  97. Singh B P, Bhargava O N, Sharma C A, Chaubey R S, Prasad S K, Negi R S and Kishore N 2017 Treptichnus Ichnogenus from the Cambrian of India and Bhutan: Its relevance to the Precambrian–Cambrian boundary; J. Paleontol. Soc. India  62(1) 39–50.Google Scholar
  98. Singh I B and Rai V 1983 Fauna and biogenic structures in Krol-Tal succession (Vendian–Early Cambrian) Lesser Himalaya: Their biostratigraphic and palaeoecological signature; J. Palaeontol. Soc. India  28 67–90.Google Scholar
  99. Srikantan B, Sant V N and Sharma S B 1969 Geology and preliminary assessment of Birmania phosphate deposit, Jaisalmer District, Rajasthan; J. Mines Metals Fuels 17 107–113.Google Scholar
  100. Srivastava P 2012a Treptichnus pedum: An ichnofossil representing Ediacaran–Cambrian Boundary in the Nagaur Group, the Marwar Supergroup, Rajasthan, India; Proc. Indian Natl. Sci. Acad. 78 161–169.Google Scholar
  101. Srivastava P 2012b Problematic worms and Priapulid-like fossils from the Nagaur Group, the Marwar Supergroup, India; Ichnos 19(3) 156–164.Google Scholar
  102. Srivastava P 2012c Ediacaran discs from the Jodhpur Sandstone, Marwar Supergroup, India: A biological diversification or taphonomic interplay?; Int. J. Geosci. 3 1120–1126.Google Scholar
  103. Srivastava P 2014 Largest Ediacaran discs from the Jodhpur Sandstone, Marwar Supergroup, India: Their palaeobiological significance; Geosci. Front. 5(2) 183–191.Google Scholar
  104. Sudan C S and Sharma U K 2000 Trace fossils distribution and stratigraphy setting of Garbyang Formation in the Girthi–Ganga section of Kumaun; J. Geol. Soc. India 55(2) 175–182.Google Scholar
  105. Sudan C S and Sharma U K 2001 Trace fossils from the Cambrian rocks of the Kunzum La Section, Spiti, H.P., India; J. Paleontol. Soc. India 46 161–171.Google Scholar
  106. Tiwari M and Parcha S K 2006 Early Cambrian trace fossils from the Tal Formation of the Mussoorie Syncline, India; Curr. Sci. 90(1) 113–118.Google Scholar
  107. Tiwari M, Parcha S K, Shukla R and Joshi H 2013 Ichnology of the Early Cambrian Tal Group, Mussoorie Syncline, Lesser Himalaya, India; J. Earth Syst. Sci.  122(6) 1467–1475.Google Scholar
  108. Torsvik T H, Carter L M, Ashwal L D, Bhushan S K, Pandit M K and Jamtyveit B 2001 Rodinia refined or obscured: Paleomagnetism of the Malani Igneous Suite (NW India); Precamb. Res. 108 319–333.Google Scholar
  109. Uchman A, Drygant D, Paszkowski M, Porȩbski J S and Turnau E 2004 Early Devonian trace fossils in non-marine redbeds in Podolia, Ukraine: Palaeoenvironmental Implications; Palaeogeogr. Palaeoclimatol. Palaeocol.  214 67–83.Google Scholar
  110. van Lente B, Ashwal L D, Pandit M K, Bowring S A and Torsvik T H 2009 Neoproterozoic hydrothermally-altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton; Precamb. Res. 170 202–222.Google Scholar
  111. Wang Y 2007 Arthropods tracks in Kaili ichnocoenosis from Lower-Middle Cambrian Kaili Formation in Jianhe County, Guizhou Province, China; Geol. Rev.  53(4) 731–751.Google Scholar
  112. Wang Y, Zhang H J, Yang X G, Li S L and Wang Q S 2006 Trace fossils from the Middle Cambrian Jialao Formation at Nangao Town, Danzhai County, Guizhou Province, China; Geol. Bull. China  25 475–481.Google Scholar
  113. Weiguo S, Xiang W G and Benhe Z 1986 Macroscopic worm-like body fossils from the Upper Precambrian 900–700 Ma Huainan district, Anhui, China and their stratigraphic and evolutionary significance; Precambrian Res.  31 377–403.Google Scholar
  114. Yang Shi-pu and Wang Xun-chang 1991 Middle Cambrian Hsuchuangian trace fossils from southern north China platform and their sedimentological significance; Acta Palaeontol. Sin.  30(1) 74–89.Google Scholar
  115. Yang Shi-pu, Changming Hu and Sun Yongchuan 1987 Discovery of Late Devonian trace fossils from Guodjngshan district, Hanyang, China and its significance; Earth Sci.  12(1) 1–8.Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Birbal Sahni Institute of PalaeosciencesLucknowIndia
  2. 2.Bond Business SchoolBond UniversityGold CoastAustralia
  3. 3.Department of GeologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations