Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

  • Mina MoradizadehEmail author
  • Mohammad R Saradjian


Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.


Soil moisture land surface parameters SLPRM AMSR-E downscaling MODIS 



The authors thank the three anonymous reviewers for their comments, which have helped to improve this manuscript.


  1. Allen P B and Naney J W 1991 Hydrology of the Little Washita RiverWatershed. Oklahoma: Data and Analyses; USDA, ARS-90, Washington, DC, 74p.Google Scholar
  2. Carlson T 2007 An overview of the ‘triangle method’ for estimating surface evapotranspiration and soil moisture from satellite imagery; Sensors 7 (8) 1612–1629.CrossRefGoogle Scholar
  3. Chanzy A and Wigneron J P 2000 Microwave emission from soil and vegetation; In: COST action 712 final report: Radiative transfer models for microwave radiometry (ed.) Mätzler C, Brussels, Belgium: European Commission (EUR 19543 EN), pp. 89–103.Google Scholar
  4. Colliander A, Chan S, Kim S B, Das N, Yueh S, Cosh M, Bindlish R, Jackson T and Njoku E 2012 Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development; Remote Sens. Environ. 121 309–322.CrossRefGoogle Scholar
  5. De Lange R, Beck R, Van DeGiesen N, Friesen J, De Wit A and Wagner W 2008 Scatterometer-derived soil moisture calibrated for soil texture with a one dimensional water-flow model; IEEE Trans. Geosci. Remote 46 (12) 4041–4049.CrossRefGoogle Scholar
  6. Dobson M C, Ulaby F T, Hallikainen M T and El-Rayes M A 1985 Microwave dielectric behavior of wet soil. Part II: Dielectric mixing models; IEEE Trans. Geosci. Remote 23 35–46.CrossRefGoogle Scholar
  7. Doubkova M, Van Dijk A I J M, Sabel D, Wagner W and Blöschl G 2012 Evaluation of the predicted error of the soil moisture retrieval from C-band SAR by comparison against modelled soil moisture estimates over Australia; Remote Sens. Environ. 120 188–196.CrossRefGoogle Scholar
  8. Gutman G and Ignatov A 1998 The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models; Int. J. Remote Sens. 19(8) 1533–1543.CrossRefGoogle Scholar
  9. Jackson T J and Schmugge T J 1991 Vegetation effects on the microwave emission of soils; Remote Sens. Environ. 36 203–212.CrossRefGoogle Scholar
  10. Jackson T J 1993 Measuring surface soil moisture using passive microwave remote sensing; Hydrol. Process. 7 139–152.CrossRefGoogle Scholar
  11. Jackson T J, Bindlish R, Gasiewski A J, Stankov B, Klein M, Njoku E G, Bosch D, Coleman T L, Laymonand C A and Starks P 2005 Polarimetric Scanning Radiometer C- and X-Band Microwave Observations During SMEX03; IEEE T. Geosci. Remote 43 (11) 2418–2430.CrossRefGoogle Scholar
  12. Li Q, Zhong R, Huang J and Gong H 2011 Comparison of two retrieval methods with combined passive and active microwave remote sensing observations for soil moisture; Math. Comput. Model. 54 1181–1193.CrossRefGoogle Scholar
  13. Mo T, Schmugge T J and Wang J R 1987 Calculations of the microwave brightness temperature of rough soil surfaces: Bare field; IEEE T. Geosci. Remote 25 47–54.CrossRefGoogle Scholar
  14. Moradizadeh M and Saradjian M R 2016 The effect of roughness in simultaneously retrieval of land surface parameters. Phys. Chem. Earth.
  15. Moradizadeh M, Momeni M M and Saradjian M R 2013 Estimation and validation of atmospheric water vapor content using a MODIS NIR band ratio technique based on AIRS water vapor products; Arab. J. Geosci. 7 1891–1897.CrossRefGoogle Scholar
  16. Moradizadeh M, Momeni M and Saradjian M 2017 Assessment of the relationship between land surface temperature (LST) and near surface water vapor in central part of Iran; J. Geogr. Environ. Plan.  28(3) Ser No. 67.Google Scholar
  17. Njoku E G 1995 Surface temperature estimation over land using satellite microwave radiometry; In: Passive microwave remote sensing of land-atmosphere interactions (eds) Choudhury B J, Kerr Y H, Njoku E G and Pampaloni P, VSP Publishing, Utrecht.Google Scholar
  18. Njoku E G and Li L 1999 Retrieval of land surface parameters using passive microwave measurements at 6–18 GHz; IEEE Trans. Geosci. Remote 37 79–93.CrossRefGoogle Scholar
  19. Njoku E G, Jackson T J, Lakshmi V, Chan T K and Nghiem S V 2003 Soil moisture retrieval from AMSR-E; IEEE Trans. Geosci. Remote 41 (2) 215–229.CrossRefGoogle Scholar
  20. Njoku E G and Chan S K 2006 Vegetation and surface roughness effects on AMSR-E land observations; Remote Sens. Environ. 100 190–199.CrossRefGoogle Scholar
  21. Owe M, Van de Griend A A and Chang A T C 1992 Surface moisture and satellite microwave observations in semiarid southern Africa; Water Resour. Res. 28 829–839.Google Scholar
  22. Owe M, De Jeu R A M and Walker J 2001 A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index; IEEE Trans. Geosci. Remote 39 1643–1654.CrossRefGoogle Scholar
  23. Pampaloni P and Paloscia S 1986 Microwave emission and plant water content: A comparison between field measurements and theory; IEEE Trans. Geosci. Remote 24 900–905.CrossRefGoogle Scholar
  24. Pan M, Sahoo A K and Wood E F 2014 Improving soil moisture retrievals from a physically based radiative transfer model; Remote Sens. Environ. 140 130–140.CrossRefGoogle Scholar
  25. Patel P and Srivastava H S 2015 An approach to validate soil moisture derived from passive microwave sensors using SAR as an interface; Int. J. Remote Sens. 36 (9) 2353–2374.CrossRefGoogle Scholar
  26. Piles M, Camps A, Vall-llossera M, Sánchez N, Martínez-Fernández J, Monerris A, Baroncini-Turricchia G, Pérez-Gutiérrez C, Aguasca A, Acevo R and Bosch-Lluís X 2010 Soil moisture downscaling activities at the REMEDHUS Cal/Val site and its application to SMOS; Proc. 11th Spec. Meeting Microwave Radiometry Remote Sensing Environment 17–21.Google Scholar
  27. Piles M, Camps A, Vall-llossera M, Corbella I, Panciera R, Rüdiger C, Kerr Y H and Walker J 2011 Downscaling SMOS-derived soil moisture using MODIS visible/infrared data; IEEE Trans. Geosci. Remote 49(9) 37–49.CrossRefGoogle Scholar
  28. Saradjian M R and Hosseini M 2011 Soil moisture estimation by using multi-polarization SAR image; Adv. Space Res. 48 278–286.CrossRefGoogle Scholar
  29. Schar C, Luthi D, Beyerle U and Heise E 1999 The soil-precipitation feedback: A process study with a regional climate model; J. Climate 12 722–741.CrossRefGoogle Scholar
  30. Schmugge T J 1985 Remote sensing of soil moisture; In: Hydrological forecasting (eds) Anderson M G and Burt T P, Wiley, New York.Google Scholar
  31. Seneviratne S I, Luthi D, Litschi M and Schar C 2006 Land–atmosphere coupling and climate change in Europe; Nature 443(7108) 205–209.CrossRefGoogle Scholar
  32. Singh G, Srivastava H S, Mesapam S and Patel P 2015a Passive microwave remote sensing of soil moisture: A step-by-step detailed methodology using AMSR-E data over Indian sub-continent; Int. J. Adv. Remote Sens. GIS 04 (1) 1045–1063.CrossRefGoogle Scholar
  33. Singh G, Srivastava H S, Mesapam S and Patel P 2015b Analysis of monthly soil moisture variations derived from AMSR-E for the year 2010 over Indian subcontinent; Proc. Int. Conf. Sustainable Energy and Build Environment, pp. 539–545.Google Scholar
  34. Srivastava H S, Patel P, Sharma Y and Navalgund R R 2009 Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data; IEEE Trans. Geosci. Remote 47 (8) 2528–2535.CrossRefGoogle Scholar
  35. Tsang L and Newton R W 1982 Microwave emission from soils with rough surfaces; J. Geophys. Res. 87 9017–9024.CrossRefGoogle Scholar
  36. Ulaby F T, Razani M and Dobson M C 1983 Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture; IEEE T. Geosci. Remote 21 51–61.CrossRefGoogle Scholar
  37. Walker J P and Houser P R 2004 Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution; Adv. Water Resour. 27 (8) 785–801.CrossRefGoogle Scholar
  38. Wang X, Xie H, Guan H and Zhou X 2007 Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions; J. Hydrol. 340 12–24.CrossRefGoogle Scholar
  39. Wigneron J P, Chanzy A, Calvet J C and Brugier N 1995 A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields; Remote Sens. Environ. 51 331–341.CrossRefGoogle Scholar
  40. Wigneron J P, Kerr Y H, Waldteufel P, Saleh K, Escorihuela M J, Richaume M J, Ferrazzoli P, de Rosnay P, Gurney R, Calvet J C, Grant J P, Guglielmetti M, Hornbuckle B, Mätzler C, Pellarin T and Schwank M 2007 L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields; Remote Sens. Environ. 107 639–655.CrossRefGoogle Scholar
  41. Zhang Y and Wegehenkel M 2006 Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration; Remote Sens. Environ. 104(4) 393–408.CrossRefGoogle Scholar
  42. Zheng, J Y, Li Z, Chen Q and Bi H Y 2015 Method for soil moisture and surface temperature estimation in the Tibetan Plateau using space borne radiometer observations; IEEE Geosci. Remote Sens. Lett. 12 (1) 97–105.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Geomatics, Faculty of Civil and Transportation EngineeringUniversity of IsfahanIsfahanIran
  2. 2.Remote Sensing Division, School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations