Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables

  • Pramit Kumar Deb Burman
  • Dipankar Sarma
  • Mathew Williams
  • Anandakumar Karipot
  • Supriyo Chakraborty


Tropical forests act as a major sink of atmospheric carbon dioxide, and store large amounts of carbon in biomass. India is a tropical country with regions of dense vegetation and high biodiversity. However due to the paucity of observations, the carbon sequestration potential of these forests could not be assessed in detail so far. To address this gap, several flux towers were erected over different ecosystems in India by Indian Institute of Tropical Meteorology as part of the MetFlux India project funded by MoES (Ministry of Earth Sciences, Government of India). A 50 m tall tower was set up over a semi-evergreen moist deciduous forest named Kaziranga National Park in north-eastern part of India which houses a significant stretch of local forest cover. Climatically this region is identified to be humid sub-tropical. Here we report first generation of the in situ meteorological observations and leaf area index (LAI) measurements from this site. LAI obtained from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) is compared with the in situ measured LAI. We use these in situ measurements to calculate the total gross photosynthesis (or gross primary productivity, GPP) of the forest using a calibrated model. LAI and GPP show prominent seasonal variation. LAI ranges between 0.75 in winter to 3.25 in summer. Annual GPP is estimated to be \(2.11\,\hbox {kg C m}^{-2} \, \hbox {year}^{-1}\).


Gross primary productivity (GPP) leaf area index (LAI) aggregated canopy model (ACM) Moderate Resolution Imaging Spectroradiometer (MODIS) tropical forest MetFlux India 



Our sincere gratitude to the Director, IITM for all his constant encouragement and support. We thank all the members of the project team for all possible help. CCCR (Centre for Climate Change Research) is part of Indian Institute of Tropical Meteorology, Pune (IITM) and is fully supported by the Earth System Science Organization (ESSO) of Ministry of Earth Sciences (MoES), Government of India. A special thanks to Dr. Stephan Matthiesen, GAUGE (Greenhouse gAs Uk and Global Emissions) UK for conducting International Summer School on global greenhouse gases in 2016.


  1. Ahl D E, Gower Stith T, Burrows S N, Shavanov N V, Myneni R B and Knyazikhin Y 2006 Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS; Remote Sens. Environ. 104 88–95.CrossRefGoogle Scholar
  2. Aragão L E O C, Shimabukuro Y E, Espirito-Santo F D B and Williams M 2005 Spatial validation of the collection 4 MODIS LAI product in Eastern Amazonia; IEEE Trans. Geosci. Rem. Sens. 43 2526–2534.CrossRefGoogle Scholar
  3. Baldocchi D, Falge E, Gu L and Olson R et al. 2001 FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities; Bull. Am. Meteor. Soc. 82 2415–2434.CrossRefGoogle Scholar
  4. Barford C C, Wofsy S C, Goulden M L, Munger J W, Pyle E H, Urbanski S P, Hutyra L, Saleska S R, Fitzjarrald D and Moore K 2001 Factors controlling long- and short-term sequestration of atmospheric \(\text{ CO }_{2}\) in a mid-latitude forest; Science 294 1688–1691.CrossRefGoogle Scholar
  5. Barman R, Jain A K and Liang M 2014 Climate-driven uncertainties in modeling terrestrial gross primary production: A site level to global-scale analysis; Global Change Biol. 20 1394–1411.CrossRefGoogle Scholar
  6. Beringer J, Hutley L B, McHugh I, Arndt S K, Campbell D, Cleugh H A, Cleverly J, Resco de Dios V, Eamus D and Evans B et al. 2016 An introduction to the Australian and New Zealand flux tower network – Ozflux; Biogeosci. 13 5895–5916.CrossRefGoogle Scholar
  7. Biudes M S, Machado N G, Danelichen V H D M, Souza M C, Vourlitis G L and Nogueira J D S 2014 Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil; Int. J. Biometeorol. 58 1181–1193.CrossRefGoogle Scholar
  8. Boden T A, Krassovski M and Yang B 2013 The AmeriFlux data activity and data system: An evolving collection of data management techniques, tools, products and services; Geosci. Instrum. Methods Data Sys. 2 165–176.Google Scholar
  9. Bonan G B 1995 Land–atmosphere \(\text{ CO }_{2}\) exchange simulated by a land surface process model coupled to an atmospheric general; J. Geophys. Res. 100 2817–2831.CrossRefGoogle Scholar
  10. Bonan G B, Lawrence P J, Oleson K W, Levis S, Jung M, Reichstein M, Lawrence D M and Swenson S C 2011 Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data; J. Geophys. Res.: Biogeosci. 116(G02014), doi:  10.1029/2010JG001593.
  11. Bréda N J 2003 Ground-based measurements of leaf area index: A review of methods, instruments and current controversies; J. Exp. Bot. 54 2403–2417.CrossRefGoogle Scholar
  12. Chabra A and Dadhwal V K 2004 Estimating terrestrial net primary productivity over India using satellite data; Curr. Sci. 86 269–271.Google Scholar
  13. Chapin III F S, Woodwell G M, Randerson J T, Rastetter E B, Lovett G M, Baldocchi D D, Clark D A, Harmon M E, Schimel D S and Valentini R et al. 2006 Reconciling carbon-cycle concepts, terminology, and methods; Ecosystems 9 1041–1050.CrossRefGoogle Scholar
  14. Chen J M, Govind A, Sonnentag O, Zhang Y, Barr A and Amiro B 2006 Leaf area index measurements at Fluxnet Canada forest sites; Agric. For. Meteorol. 140 257–268.CrossRefGoogle Scholar
  15. Coops N C, Black T A, Jassal R P S, Trofymow J T and Morgenstern K 2007 Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand; Remote Sens. Environ. 107 385–401.CrossRefGoogle Scholar
  16. Curtis P S, Hanson P J, Bolstad P, Barford C, Randolph J, Schmid H and Wilson K B 2002 Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests; Agric. For. Meteorol. 113 3–19.CrossRefGoogle Scholar
  17. El-Masri B, Barman R, Meiyappan P, Song Y, Liang M and Jain A K 2013 Carbon dynamics in the Amazonian basin: Integration of eddy covariance and ecophysiological data with a land surface model; Agric. For. Meteorol. 182 156–167.CrossRefGoogle Scholar
  18. Fensholt R, Sandholt I and Rasmussen M S 2004 Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements; Rem. Sens. Environ. 91 490–507.CrossRefGoogle Scholar
  19. Fisher J I and Mustard J F 2007 Cross-scalar satellite phenology from ground, Landsat, and MODIS data; Remote Sens. Environ. 109 261–273.CrossRefGoogle Scholar
  20. Fisher R A, Williams M, Do V, Lobo R, Costa A L D and Meir P 2006 Evidence from Amazonian forests is consistent with isohydric control of leaf water potential; Plant Cell Environ. 29 151–165.CrossRefGoogle Scholar
  21. Fisher R, Williams M, Costa D, Lola A, Malhi Y, Costa R D, Almeida S and Meir P 2007 The response of an eastern Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment; Global Change Biol. 13 2361–2378.CrossRefGoogle Scholar
  22. Gao F, Morisette J, Wolfe R E, Ederer G, Pedelty J, Masuoka E, Myneni R, Tan B and Nightingale J 2008 An algorithm to produce temporally and spatially continuous MODIS-LAI time series; IEEE Geosci. Remote Sens. Lett. 5 60–64.CrossRefGoogle Scholar
  23. Garbulsky M F, Peñuelas J, Papale D, Ardö J, Goulden M L, Kiely G, Richardson A D, Rotenberg E, Veenendaal E M and Filella I 2010 Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems; Global Ecol. Biogeogr. 19 253–267.CrossRefGoogle Scholar
  24. Garrigues S, Shabanov N V, Swanson K, Morisette J, Baret F and Myneni R B 2008 Intercomparison and sensitivity analysis of leaf area index retrievals from LAI-2000, AccuPAR, and digital hemispherical photography over croplands; Agric. For. Meteorol. 148 1193–1209.CrossRefGoogle Scholar
  25. Garrigues S, Lacaze R, Baret F J T M, Morisette J T, Weiss M, Nickeson J E, Fernandes R, Plummer S, Shavanov N V and Myneni R B et al. 2008 Validation and intercomparison of global leaf area index products derived from remote sensing data; J. Geophys. Res:. Biogeosci. 113(G02028), doi:  10.1029/2007JG000635.
  26. Gitelson A A, Peng Y, Masek J G, Rundquist D C, Verma S, Suyker A, Baker J M, Hatfield J L and Meyers T 2012 Remote estimation of crop gross primary production with Landsat data; Remote Sens. Environ. 121 404–414.CrossRefGoogle Scholar
  27. Goulden M L, Munger J W, Fan S-M, Daube B C and Wofsy S C 1996 Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability; Science 271 1576–1578.CrossRefGoogle Scholar
  28. Gower S T, Kucharik C J and Norman J M 1999 Direct and indirect estimation of leaf area index, \(\text{ f }_{APAR}\), and net primary production of terrestrial ecosystems; Remote Sens. Environ. 70 29–51.CrossRefGoogle Scholar
  29. Grace J, Malhi Y, Lloyd J, McIntyre J, Miranda A C, Meir P and Miranda H S 1996 The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest; Global Change Biol. 2 209–217.CrossRefGoogle Scholar
  30. Harper C W, Blair J M, Fay P A, Knapp A K and Carlisle J D 2005 Increased rainfall variability and reduced rainfall amount decreases soil \(\text{ CO }_{2}\) flux in a grassland ecosystem; Global Change Biol. 11 322–334.CrossRefGoogle Scholar
  31. Heinsch F A, Zhao M, Running S W, Kimball J S, Nemani R, Davis K J, Bolstad P V, Cook B D, Desai A R and Ricciuto D M et al. 2006 Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations; IEEE Trans. Geosci. Remote Sens. 7 1908–1925.CrossRefGoogle Scholar
  32. Huete A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G 2002 Overview of the radiometric and biophysical performance of the MODIS vegetation indices; Remote Sens. Environ. 83 195–213.CrossRefGoogle Scholar
  33. Jain S, Kumar V and Saharia M 2013 Analysis of rainfall and temperature trends in northeast India; Int. J. Climatol. 33 968–978.CrossRefGoogle Scholar
  34. Jha C S, Thumaty K C, Rodda S R, Sonakia A and Dadhwal V K 2013 Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique; J. Earth Syst. Sci. 122 1259–1268.CrossRefGoogle Scholar
  35. Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M and Baret F 2004 Review of methods for in situ leaf area index determination. Part I: Theories, sensors and hemispherical photography; Agric. For. Meteorol. 121 19–35.CrossRefGoogle Scholar
  36. Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D and Chen J et al. 2011 Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations; J. Geophys. Res.: Biogeosci. 116(G00J07), doi:  10.1029/2010JG001566.
  37. Kaimal J C and Finnigan J J 1994a Atmospheric Boundary Layer Flows: Their Structure and Measurement; United States of America Oxford University Press, pp. 264–266.Google Scholar
  38. Kaimal J C and Finnigan J J 1994b Atmospheric Boundary Layer Flows: Their Structure and Measurement; United States of America Oxford University Press, pp. 234–240.Google Scholar
  39. Knyazikhin Y, Martonchik J V, Myneni R B, Diner D J and Running S W 1998 Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data; J. Geophys. Res. 103 32,257–32,276.CrossRefGoogle Scholar
  40. Kobayashi H, Ryu Y, Baldocchi D D, Welles J M and Norman J M 2013 On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements?; Agric. For. Meteorol. 174 170–183.CrossRefGoogle Scholar
  41. Le Quéré C, Raupach M R, Canadell J G, Marland G, Bopp L, Ciais P, Conway T J, Doney S C, Feely R A and Foster P et al. 2009 Trends in the sources and sinks of carbon dioxide; Nat. Geosci. 2 831–836.CrossRefGoogle Scholar
  42. Le Quéré C, Moriarty R, Andrew R M, Peters G P, Ciais G P, Friedlingstein P, Jones S D, Sitch S, Tans P and Arneth A et al. 2015 Global carbon budget 2014; Earth Syst. Sci. Data 7 47–85.CrossRefGoogle Scholar
  43. Liang L, Schwartz M D and Fei S 2011 Validating satellite phenology through ground observation and landscape scaling in a mixed seasonal forest; Remote Sens. Environ. 115 143–157.CrossRefGoogle Scholar
  44. Liu Z, Shao Q and Liu J 2014 The performances of MODIS-GPP and-ET products in China and their sensitivity to input data (FPAR/LAI); Remote Sens. 7 135–152.CrossRefGoogle Scholar
  45. Mizoguchi Y, Miyata A, Ohtani Y, Hirata R and Yuta S 2009 A review of tower flux observation sites in Asia; J. For. Res. 14 1–9.CrossRefGoogle Scholar
  46. Muraoka H, Saigusa N, Nasahara K N, Noda H, Yoshino J, Saitoh T M, Nagai S, Murayama S and Koizumi H 2010 Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan; J. Plant Res. 123 563–576.CrossRefGoogle Scholar
  47. Myneni R B, Hoffman S, Knyazikhin Y, Privette J L, Glassy J, Tian Y, Wang Y, Song S, Zhang Y and Smith G R et al. 2002 Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data; Remote Sens. Environ. 83 214–231.CrossRefGoogle Scholar
  48. Nayak R K, Patel N R and Dadhwal V K 2010 Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model; Environ. Monit. Assess. 170 195–213.CrossRefGoogle Scholar
  49. Nayak R, Patel N and Dadhwal V K 2013 Inter-annual variability and climate control of terrestrial net primary productivity over India; Int. J. Climatol. 33 132–142.CrossRefGoogle Scholar
  50. Neumann M, Zhao M, Kinderman G and Hasenauer H 2015 Comparing MODIS net primary production estimates with terrestrial national forest inventory data in Austria; Remote Sens. 7 3878–3906.CrossRefGoogle Scholar
  51. Niinemets Ü 1999 Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants; New Phytol. 144 35–47.CrossRefGoogle Scholar
  52. Patel N, Dadhwal V and Saha S 2011 Measurement and scaling of carbon dioxide (\(\text{ CO }_{2}\)) exchanges in wheat using flux-tower and remote sensing; J. Indian Soc. Remote Sens. 39 383–391.CrossRefGoogle Scholar
  53. Rodda S R, Thumaty K C, Jha C S and Dadhwal V K 2016 Seasonal variations of carbon dioxide, water vapor and energy fluxes in tropical Indian mangroves; Forests 7 35.CrossRefGoogle Scholar
  54. Saigusa N, Yamamoto S, Murayama S and Kondo H 2005 Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements; Agric. For. Meteorol. 134 4–16.CrossRefGoogle Scholar
  55. Saigusa N, Yamamoto S, Murayama S, Kondo H and Nishimura N 2002 Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method; Agric. For. Meteorol. 112 203–215.CrossRefGoogle Scholar
  56. Saikia A 2009 NDVI variability in northeast India; Scott. Geogr. J. 125 195–213.CrossRefGoogle Scholar
  57. Schaefer K, Schwalm C R, Williams C, Arain M A, Barr A, Chen J M, Davis K J, Dimitrov D, Hilton T W and Hollinger D Y et al. 2012 A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis; J. Geophys. Res.: Biogeosci. 117(G03010), doi:  10.1029/2012JG001960.
  58. Schimel D S, House J I, Hibbard K A, Bousquet P, Ciais P, Peylin P, Braswell B H, Apps M J, Baker D and Bondeau A et al. 2001 Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems; Nature 414 169–172.CrossRefGoogle Scholar
  59. Sellers P, Dickinson R, Randall D, Betts A, Hall F, Berry J, Collatz G, Denning A, Mooney H and Nobre C et al. 1997 Modeling the exchanges of energy, water, and carbon between continents and the atmosphere; Science 275 502–509.CrossRefGoogle Scholar
  60. Solberg S, Brunner A, Hanssen K H, Lange H, Næsset E, Rautiainen M and Stenberg P 2009 Mapping LAI in a Norway spruce forest using airborne laser scanning; Remote Sens. Environ. 113 2317–2327.CrossRefGoogle Scholar
  61. Sponseller R A 2007 Precipitation pulses and soil \(\text{ CO }_{2}\) flux in a Sonoran desert ecosystem; Global Change Biol. 13 426–436.CrossRefGoogle Scholar
  62. Sundareshwar P, Murtugudde R, Srinivasan G, Singh S, Ramesh K, Ramesh R, Verma S, Agarwal D, Baldocchi D and Baru C et al. 2007 Environmental monitoring network for India; Science 316 204–205.CrossRefGoogle Scholar
  63. Takagi H, Saeki T, Oda T, Saito M, ValsalaV, Belikov D, Saito R, Yoshida Y, Morino I and Uchino O et al. 2011 On the benefit of GOSAT observations to the estimation of regional \(\text{ CO }_{2}\) fluxes; Sola 7 161–164.CrossRefGoogle Scholar
  64. Tang H, Brolly M, Zhao F, Strahler A H, Schaaf C L, Ganguly S, Zhang G and Dubayah R 2014 Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA; Remote Sens. Environ. 143 131–141.CrossRefGoogle Scholar
  65. Tripathi R, Sahoo R N, Gupta V K, Sehgal V K and Sahoo P M 2013 Retrieval of Leaf Area Index using IRS-P6, LISS-III data and validation of MODIS LAI product (MOD15 V5) over trans Gangetic Plains of India; Indian J. Agr. Sci 83 380–385.Google Scholar
  66. Turner D P, Ritts W D, Cohen W B, Gower S T, Zhao M, Running S W, Wofsy S C, Urbanski S, Dunn A L and Munger J 2003 Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation; Remote Sens. Environ. 88 256–270.CrossRefGoogle Scholar
  67. Valsala V, Tiwari Y K, Pillai P, Roxy M, Maksyutov S and Murtugudde R 2013 Intraseasonal variability of terrestrial biospheric \(\text{ CO }_{2}\) fluxes over india during summer monsoons; J. Geophys. Res.: Biogeosci. 118 752–769.CrossRefGoogle Scholar
  68. Verma M, Friedl M A, Richardson A D, Kiely G, Law B E, Cescatti A, Wohlfart G, Gielen B, Roupsard O and Moors E J et al. 2014 Remote sensing of annual terrestrial gross primary productivity from MODIS: An assessment using the FLUXNET La Thuile dataset; Biogeosci. 11 2185–2200.CrossRefGoogle Scholar
  69. Vickers D and Mahrt L 1997 Quality control and flux sampling problems for tower and aircraft data; J. Atmos. Ocean. Tech. 14 512–526.CrossRefGoogle Scholar
  70. Walker J, Robarge W, Wu Y and Meyers T 2006 Measurement of bi-directional ammonia fluxes over soybean using the modified Bowen-ratio technique; Agric. For. Meteorol. 138 54–68.CrossRefGoogle Scholar
  71. Wang X, Ma M, Li X, Song Y, Tan J, Huang G, Zhang Z, Zhao T, Feng J and Ma Z et al. 2013 Validation of MODIS-GPP product at 10 flux sites in northern China; Int. J. Remote Sens. 34 587–599.CrossRefGoogle Scholar
  72. Watham T, Kushwaha S, Patel N and Dadhwal V 2014 Monitoring of carbon dioxide and water vapour exchange over a young mixed forest plantation using eddy covariance technique; Curr. Sci. 107 857–867.Google Scholar
  73. Watson D J 1947 Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years; Ann. Bot. 11 41–76.CrossRefGoogle Scholar
  74. Williams M, Rastetter E, Fernandes D, Goulden M, Wofsy S, Shaver G, Melillo J, Munger J, Fan S M and Nadelhoffer K 1996 Modelling the soil-plant-atmosphere continuum in a Quercus–Acer stand at Harvard Forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties; Plant Cell Environ. 19 911–927.CrossRefGoogle Scholar
  75. Williams M, Rastetter E B, Fernandes D N, Goulden M L, Shaver G R and Johnson L C 1997 Predicting gross primary productivity in terrestrial ecosystems; Ecol. Appl. 7 882–894.CrossRefGoogle Scholar
  76. Wu C, Chen J M and Huang N 2011 Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration; Remote Sens. Environ. 115 3424–3435.CrossRefGoogle Scholar
  77. Yang W, Tan B, Huang D, Rautiainen M, Shabanov N V, Wang Y, Privette J L, Huemmrich K F, Fensholt R and Sandholt I et al. 2006 MODIS leaf area index products: From validation to algorithm improvement; IEEE Trans. Geosci. Remote Sens. 44 1885–1898.CrossRefGoogle Scholar
  78. Zobel D B and Singh S P 1997 Himalayan forests and ecological generalizations; BioScience 47 735–745.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Centre for Climate Change ResearchIndian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of Environmental SciencesTezpur UniversityTezpurIndia
  3. 3.School of GeosciencesUniversity of EdinburghEdinburghUK
  4. 4.Department of Atmospheric and Space SciencesSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations