Continental rift-setting and evolution of Neoproterozoic Sindreth Basin in NW-India

  • Stefan SchöbelEmail author
  • Kamal K Sharma
  • Thorsten Hörbrand
  • Theresa Böhm
  • Ines Donhauser
  • Helga de Wall


The Neoproterozoic Sindreth Basin, NW India, and its surrounding area represent a half graben structure situated between the undeformed Malani Igneous Suite (MIS) in the west and a corridor of coeval Cryogenian ductile deformation, anatexis and granite intrusion in the east. The main lithologies observed in the basin are conglomerate, fanglomerate, debris flow and lake deposits derived from a nearby continental provenance, intercalated with concurrent mafic and felsic lava flows. Based on geological traverses across the strike of the basin, we propose a three-fold classification comprising Lower Clastic Unit and an Upper Clastic Unit and a Bimodal (basalt–rhyolite) Volcanic Unit separating the two. Tilting due to basin inversion and faulting has been observed; however, the rocks are unmetamorphosed and show undisturbed primary sedimentary features. The stratigraphic record of the basin is characteristic for deposition and magmatism in a fault-related continental setting. Implications of the findings have been discussed in the context of Neoproterozoic crustal dynamics in NW India. This study provides conclusive evidence for a continental setting for Sindreth Basin evolution and contests the recent models of active subduction setting (either back-arc basin or accretionary sediments over a subduction zone).


Sindreth Basin continental setting basin evolution NW India Malani Igneous Suite 



We thank L Scharfenberg, M Maurer and E Cacciatore (GZN Erlangen) for their support in the field. We also thank M K Pandit (Jaipur) for discussion on the geological setting. We kindly acknowledge the DFG Grant (Wa-1010/15-1) for part of this study. Two anonymous reviewers are thanked for their constructive comments.


  1. Ashwal L D, Solanki A M, Pandit M K, Corfu F, Hendriks B W H, Burke K and Torsvik T H 2013 Geochronology and geochemistry of Neoproterozoic Mt. Abu Granitoids, NW India: Regional correlation and implications for Rodinia paleogeography; Precamb. Res. 236 265–281.CrossRefGoogle Scholar
  2. Bhushan S K 2000 Malani rhyolites – a review; Gondwana Res. 3 65–77.CrossRefGoogle Scholar
  3. Chore S A and Mohanty M 1998 Stratigraphy and tectonic setting of the Trans-Aravalli Neoproterozoic volcano-sedimentary sequences in Rajasthan; J. Geol. Soc. India 51 57–68.Google Scholar
  4. Collins A S and Pisarevsky S A 2005 Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens; Earth-Sci. Rev. 71 229–270.Google Scholar
  5. de Wall H, Schöbel S, Pandit M K, Sharma K K and Just J 2010 A record of ductile syn-intrusional fabrics to post solidification cataclasis: Magnetic fabric analyses of Neoproterozoic Mirpur and Mt. Abu Granitoids, NW India; In: Structural Geology: From Classical to Modern Concepts, Geol. Soc. India 75 239–253.Google Scholar
  6. de Wall H, Pandit M K, Sharma K K, Schöbel S and Just J 2014 Deformation and granite intrusion in the Sirohi area, SW Rajasthan – Constraints on Cryogenian to Pan-African crustal dynamics of NW India; Precamb. Res. 254 1–18.CrossRefGoogle Scholar
  7. Dharma Rao C V, Santosh M and Kim S W 2012 Cryogenian volcanic arc in the NW Indian Shield: Zircon SHRIMP U–Pb geochronology of felsic tuffs and implications for Gondwana assembly; Gondwana Res. 22 36–53.CrossRefGoogle Scholar
  8. Geological Survey of India 1998 Geological map of India. 1 map on 4 sheets: col.; \(94\times 78\) cm. 7th edn, Hyderabad.Google Scholar
  9. Gregory L C, Meert J G, Bingen B, Pandit M K and Torsvik T H 2009 Paleomagnetism and geochronology of the Malani Igneous Suite, northwest India: Implications for the configuration of Rodinia and the assembly of Gondwana; Precamb. Res. 170 13–26.CrossRefGoogle Scholar
  10. Gupta S N, Arora Y K, Mathur R K, Iqballuddin Prasad B, Sahai T N and Sharma S B 1997 The Precambrian geology of the Aravalli Region, southern Rajasthan and northeastern Gujarat; Geol. Surv. India Memoir 123 262p.Google Scholar
  11. Heron A M 1953 The geology of central Rajputana; Geol. Surv. India Memoir 79 389p.Google Scholar
  12. Johnson A M 1970 Physical processes in geology: A method for interpretation of natural phenomena – intrusions in igneous rocks, fractures, and folds, flow of debris and ice; 1st edn, Freeman, Cooper, San Francisco, 577p.Google Scholar
  13. Just J, Schulz B, de Wall H, Jourdan F and Pandit M K 2011 Monazite CHIME/EPMA dating of Erinpura granitoid deformation: Implications for Neoproterozoic tectono-thermal evolution of NW India; Gondwana Res. 19 402–412.CrossRefGoogle Scholar
  14. Major J J 1997 Depositional processes in large-scale debris-flow experiments; J. Geol. 105 345–366.CrossRefGoogle Scholar
  15. Mulder T and Alexander J 2001 The physical character of subaqueous sedimentary density flows and their deposits; Sedimentology 48 269–299.CrossRefGoogle Scholar
  16. Naik M S 1993 The geochemistry and genesis of the granitoids of Sirohi, Rajasthan, India; J. Southeast Asian Earth Sci. 8 111–115.CrossRefGoogle Scholar
  17. Pareek H S 1981 Petrochemistry and petrogenesis of the Malani Igneous Suite, India; Geol. Soc. Am. Bull. 92 206–273.CrossRefGoogle Scholar
  18. Purohit R, Papineau D, Kröner A, Sharma K K and Roy A B 2012 Carbon isotope geochemistry and geochronological constraints of the Neoproterozoic Sirohi Group from northwest India; Precamb. Res. 220–221 80–90.CrossRefGoogle Scholar
  19. Roy A B and Jakhar S R 2002 Geology of Rajasthan (Northwest India) – Precambrian to Recent; Scientific Publishers (India), Jodhpur, 421p.Google Scholar
  20. Roy A B and Sharma K K 1999 Geology of the region around Sirohi town, western Rajasthan – story of Neoproterozoic evolution of the Trans-Aravalli crust; In: Geological Evolution of Western Rajasthan (ed.) Paliwal B S, Scientific Publishers India, Jodhpur, pp. 19–33.Google Scholar
  21. Sarkar G, Bishui P K, Chattopadhyay B, Chowdhury S, Chowdhury I, Saha K C and Kumar A 1992 Geochronology of granites and felsic rocks of the Delhi Fold Belt; Rec. Geol. Surv. India 125 21–23.Google Scholar
  22. Sen A, Pande K, Sheth H C, Sharma K K, Sarkar S, Dayal A M and Mistry H 2013 An Ediacaran-Cambrian thermal imprint in Rajasthan, western India: Evidence from 40Ar-39Ar geochronology of the Sindreth volcanics; J. Earth Syst. Sci.  122 1477–1493.Google Scholar
  23. Scharfenberg L, de Wall H, Schöbel S, Minor A, Maurer M, Pandit M K and Sharma K K 2015 In-situ gamma radiation measurements in the Neoproterozoic rocks of Sirohi region, NW India; J. Earth Syst. Sci. 124 1223–1234.CrossRefGoogle Scholar
  24. Sharma K K 1996 Stratigraphy, structure and tectonic evolution of the metasediments and associated rocks of the Sirohi region, southwestern Rajasthan: Unpublished PhD thesis, Mohalal Sukhadia University, Udaipur, 103p.Google Scholar
  25. Sharma K K 2004a Geological setting of the Balda (Sirohi) Tungsten Deposit, Rajasthan; J. Appl. Geochem. 6 213–220.Google Scholar
  26. Sharma K K 2004b The Neoproterozoic Malani magmatism of the northwestern Indian shield: implications for crust-building processes; Proc. Indian Acad. Sci. (Earth Planet. Sci.) 113 795–807.Google Scholar
  27. Singh Y K, De Waele B, Karmakar S, Sarkar S and Biswal T K 2010 Tectonic setting of the Balaram–Kui–Surpagla–Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana assembly; Precamb. Res. 183 669–688.CrossRefGoogle Scholar
  28. Sohn Y K, Rhee C W and Kim B C 1999 Debris flow and hyperconcentrated flood-flow deposits in an alluvial fan, northwestern part of the Cretaceous Yongdong Basin, central Korea; J. Geol. 107 111–132.CrossRefGoogle Scholar
  29. Somani O P, Misra A, Jeyagopal A V, Nanda L K and Parihar P S 2012 Radioelemental distribution in Neoproterozoic volcano-sedimentary Sindreth Basin, Sirohi District, Rajasthan and its significance; Curr. Sci. 103 305.Google Scholar
  30. van Lente B, Ashwal L D, Pandit M K, Bowring S A and Torsvik T H 2009 Neoproterozoic hydrothermally altered basaltic rocks from Rajasthan, northwest India: Implications for late Precambrian tectonic evolution of the Aravalli Craton; Precamb. Res. 170 202–222.Google Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Stefan Schöbel
    • 1
    • 3
    Email author
  • Kamal K Sharma
    • 2
  • Thorsten Hörbrand
    • 1
  • Theresa Böhm
    • 1
  • Ines Donhauser
    • 1
  • Helga de Wall
    • 1
  1. 1.Geozentrum NordbayernUniversität Erlangen-Nürnberg ErlangenGermany
  2. 2.Department of GeologyGovernment Postgraduate CollegeSirohiIndia
  3. 3.Geozentrum HannoverGerman Federal Institute for Geosciences and Natural ResourcesHannoverGermany

Personalised recommendations