Journal of Earth System Science

, Volume 122, Issue 2, pp 515–529 | Cite as

Global distribution of pauses observed with satellite measurements


Several studies have been carried out on the tropopause, stratopause, and mesopause (collectively termed as ‘pauses’) independently; however, all the pauses have not been studied together. We present global distribution of altitudes and temperatures of these pauses observed with long-term space borne high-resolution measurements of Global Positioning System (GPS) Radio Occultation (RO) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported. In addition, we show that asymmetries between northern and southern hemispheres continue up to the mesopause. We analyze inter and intra-seasonal variations and long-term trends of these pauses at different latitudes. Finally, a new reference temperature profile is shown from the ground to 110 km for tropical, mid-latitudes, and polar latitudes for both northern and southern hemispheres.


Tropopause stratopause mesopause satellite measurements 



The authors would like to thank UCAR and SABER team for providing the dataset through their ftp sites. They also thank all other data sources for providing data through their ftp sites. They are grateful to Prof. B V Krishna Murthy for helping them in improving the paper by fruitful discussions.


  1. Añel J A, Antuña J C, de la Torre L, Castanheira J M and Gimeno L 2008 Climatological features of global multiple tropopause events; J. Geophys. Res. 113 D00B08, doi: 10.1029/2007JD009697.CrossRefGoogle Scholar
  2. Anthes R A et al. 2008 The COSMIC/FORMOSAT-3 mission: Early results; Bull. Am. Meteor. Soc. 89 1–21.CrossRefGoogle Scholar
  3. Aumann H H et al. 2003 AIRS/AMSU/HSB on the Aqua Mission: Design, science objectives, data products, and processing systems; IEEE Trans. Geosci. Rem. Sens. 41 2.CrossRefGoogle Scholar
  4. Beagley S R, de Grandpré J, Koshyk J N, McFarlane N A and Shepherd T G 1997 Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model; Atmos. Ocean 35 293–331.CrossRefGoogle Scholar
  5. Berger U and von Zhan U 1999 The two-level structure of the mesopause: A model study; J. Geophys. Res. 104 22,083–22,093.CrossRefGoogle Scholar
  6. Birner T 2010 Recent widening of the tropical belt from global tropopause statistics: Sensitivities; J. Geophys. Res. 115 D23109, doi: 10.1029/2010JD014664.CrossRefGoogle Scholar
  7. Dee D P and Uppala S 2009 Variational bias correction of satellite radiance data in the ERA-Interim reanalysis; Quart. J. Roy. Meteorol. Soc. 135 1830–1841.CrossRefGoogle Scholar
  8. García-Comas M et al. 2008 Errors in Sounding of the Atmosphere using Broad band Emission Radiometry (SABER) kinetic temperature caused by non-local thermodynamic-equilibrium model parameters; J. Geophys. Res. 113 D24106, doi: 10.1029/2008JD010105.CrossRefGoogle Scholar
  9. Gettelman A, Hoor P, Pan L L, Randel W J, Hegglin M I and Birner T 2011 The extra tropical upper troposphere and lower stratosphere; Rev. Geophys. 49 RG3003, doi: 10.1029/2011RG000355.CrossRefGoogle Scholar
  10. Gille J et al. 2008 High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data; J. Geophys. Res. 113 D16S43, doi: 10.1029/2007JD008824.CrossRefGoogle Scholar
  11. Hitchman M H and Leovy C B 1986 Evolution of the zonal mean state in the equatorial middle atmosphere during October 1978–May 1979; J. Atmos. Sci. 43 3159–3176.CrossRefGoogle Scholar
  12. Hitchman M H, Gille J C, Rodgers C D and Brasseur G 1989 The separated polar winter stratopause: A gravity wave driven climatological feature; J. Atmos. Sci. 46 410–422.CrossRefGoogle Scholar
  13. Hoinka K P 1998 Statistics of the global tropopause pressure; Mon. Weather. Rev. 126 3303–3325.CrossRefGoogle Scholar
  14. Jiang J H et al. 2004 Comparison of GPS/SAC-C and MIPAS/ENVISAT temperature profiles and its possible implementation for EOS MLS observations, in CHAMP mission results for gravity and magnetic field mapping, and GPS atmospheric sounding; (Berlin/Heidelberg/New York: Springer), pp. 573–578.Google Scholar
  15. Kiladis G N, Straub K H, Reid G C and Gage K S 2001 Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere; Quart. J. Roy. Meteorol. Soc. 127 1961–1983.Google Scholar
  16. Kishore Kumar G, Venkat Ratnam M, Patra A K, Vijaya Bhaskara Rao S and Russell J 2008 Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations; J. Geophys. Res. 113 D23106, doi: 10.1029/2008JD010511.CrossRefGoogle Scholar
  17. Kursinski E R, Hajj G A, Schofield J T, Linfield R P and Hardy K R 1997 Observing the Earth’s atmosphere with radio occultation measurements using the Global Positioning System; J. Geophys. Res. 102 23,429–23,465.Google Scholar
  18. Labitzke K, Barnett J J and Edwards B (eds) 1985 Middle Atmosphere Program; MAP Handbook, 16. University of Illinois, Urbana.Google Scholar
  19. Lorenc A C, Ballard S P, Bell R S, Ingleby N B, Andrews P L F, Barker D M, Bray J R, Clayton A M, Dalby T, Li D, Payne T J and Saunders F W 2000 The Met. Office global three-dimensional variational data assimilation scheme; Quart. J. Roy. Meteorol. Soc. 126(570) 2991–3012.CrossRefGoogle Scholar
  20. Manney G L, Schwartz M J, Kruger K, Santee M L, Pawson S, Lee J N, Daffer W L, Fuller R A and Livesey N J 2009 Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming; Geophys. Res. Lett. 36 L12815, doi: 10.1029/2009GL038585.CrossRefGoogle Scholar
  21. Mertens C J, Mlynczak M G, Lopez-Puertas M, Wintersteiner P P, Picard R H, Winick J R, Gordley L L and Russell III J M 2001 Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-μm Earth limb emission under non-LTE conditions; Geophys. Res. Lett. 28 1391–1394.CrossRefGoogle Scholar
  22. Onogi K et al. 2007 The JRA-25 Reanalysis; J. Meteor. Soc. Japan 85 369–432.CrossRefGoogle Scholar
  23. Randel W J, Wu F and Gaffen D 2000 Interannual variability of the tropical tropopause derived from radiosonde and NCEP reanalysis; J. Geophys. Res. 105 15,509–15,523.CrossRefGoogle Scholar
  24. Ratnam M V, Shen C M, Chen W N and Nee J B 2004 Study on oxygen atmospheric band dayglow: Global and seasonal variations deduced from high-resolution Doppler imager observations; J. Atmos. Sol. Terr. Phys. 66 209–218.CrossRefGoogle Scholar
  25. Ratnam M V, Tsuda T, Shiotani M and Fujiwara M 2005 New characteristics of the tropical tropopause revealed by CHAMP/GPS measurements; SOLA 1 185–188, doi: 10.2151/sola.2005-048.CrossRefGoogle Scholar
  26. Ratnam M V, Tsuda T, Mori S and Kozu T 2006 Modulation of tropopause temperature structure revealed by simultaneous radiosonde and CHAMP GPS measurements; J. Meteor. Soc. Japan 84 989–1003.CrossRefGoogle Scholar
  27. Ratnam M V, Patra A K and Krishna Murthy B V 2010 Tropical mesopause: Is it always close to 100 km?; J. Geophys. Res. 115 D06106, doi: 10.1029/2009JD012531.CrossRefGoogle Scholar
  28. Santer B D, Sausen R, Wigley T M L, Boyle J S, Achuta R K, Doutriaux C, Hansen J E, Geehl G A, Roeckner E, Ruedy R, Schmidt G and Taylor K E 2003 Behavior of tropopause altitude and atmospheric temperature in models, reanalysis, and observations: Decadal changes; J. Geophys. Res. 108(D1) 4002, doi: 10.1029/2002JD002258.CrossRefGoogle Scholar
  29. Schmidt T, Wickert J, Beyerle G and Reigber C 2004 Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP; J. Geophys. Res. 109 D13105, doi: 10.1029/2004JD004566.CrossRefGoogle Scholar
  30. Schmidt T, Wickert J, Beyerle G and Heise S 2008 Global tropopause height trends estimated from GPS radio occultation data; Geophys. Res. Lett. 35 L11806, doi: 10.1029/2008GL034012.CrossRefGoogle Scholar
  31. She C Y, David A Krueger, Rashid Akmaev, Hauke Schmidt, Elsayed Talaat and Sam Yee 2009 Long-term variability in mesopause region temperatures over Fort Collins, Colorado (41°N, 105°W) based on lidar observations from1990 through 2007; J. Atmos. Sol. Terr. Phys. 71 1558–1564.CrossRefGoogle Scholar
  32. Sivakumar V, Bencherif H, Hauchecorne A, Keckhut P, Rao D N, Sharma S, Chandra H, Jayaraman A and Rao P B 2006 Rayleigh lidar observations of double stratopause structure over three different northern hemisphere stations; Atmos. Chem. Phys. Discuss. 6 6933–6956, doi: 10.5194/acpd-6-6933-2006.CrossRefGoogle Scholar
  33. Son S W, Tandon N F and Polvani L M 2011 The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurement; J. Geophys. Res. 116 D20113, doi: 10.1029/2011JD016030.CrossRefGoogle Scholar
  34. Tomikawa Y, Sato K, Watanabe S, Kawatani Y, Miyazaki K and Takahashi M 2008 Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM; J. Geophys. Res. 113 D17117, doi: 10.1029/2008JD009786.CrossRefGoogle Scholar
  35. von Zahn U, Hoffner J, Eska V and Alpers M 1996 The mesopause altitude: Only two distinctive levels worldwide? Geophys. Res. Lett. 23 3231–3234.CrossRefGoogle Scholar
  36. Waters J W et al. 2006 The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite; IEEE Trans. Geosci. Rem. Sens. 44 5.CrossRefGoogle Scholar
  37. Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan T K, Melbourne W G and Hocke K 2001 Atmosphere sounding by GPS radio occultation: First results from CHAMP; Geophys. Res. Lett. 28 3263–3266.CrossRefGoogle Scholar
  38. World Meteorological Organization (WMO), Definition of the tropopause 1957; WMO Bull. 6, Geneva, Switzerland.Google Scholar

Copyright information

© Indian Academy of Sciences 2013

Authors and Affiliations

    • 1
    • 2
    • 2
  1. 1.National Atmospheric Research LaboratoryGadankiIndia
  2. 2.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations