Advertisement

Journal of Earth System Science

, Volume 121, Issue 3, pp 847–853 | Cite as

Detection of Mg spinel lithologies on central peak of crater Theophilus using Moon Mineralogy Mapper (M3) data from Chandrayaan-1

  • D LAL
  • P CHAUHAN
  • R D SHAH
  • S BHATTACHARYA
  • AJAI
  • A S KIRAN KUMAR
Article

Spectral reflectance data derived from Moon Mineralogy Mapper (M3) onboard India’s Chandrayaan-1 has revealed Fe bearing Mg-spinel-rich lithology on central peaks of the crater Theophilus. These newly identified Fe bearing Mg-spinel-rich rock types are defined by their strong 2-μm absorption and lack of 1-μm absorptions in spectral reflectance response. Such lithology has been reported previously along the inner ring of Moscoviense Basin on the lunar far side. The Modified Gaussian Modeling (MGM) analysis of the Fe bearing Mg-spinel reflectance spectra has been done and the results of the analysis clearly bring out a strong spectral absorption at 1872 nm with no significant absortion around 1000 nm. The presence of spinel group of minerals in the Theophilus central peak and the fact that central peaks mostly represent uplifted mass of deep crustal material confirm that central peaks can be used as a window to study the deep crustal and/or upper mantle composition and may lead to a fresh perspective about the crustal composition of Moon.

Keywords

Lunar surface Mg-spinel central peak Theophilus remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J B 1974 Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system; J. Geophys. Res. 79 4829–4836.CrossRefGoogle Scholar
  2. Adams J B and Goulland L H 1978 Plagioclase Feldspar: Visible and near infrared diffuse reflectance spectra as applied to remote sensing; 9th LPSC, pp. 2901–2909.Google Scholar
  3. Adams J B, Horz F and Gibbons R V 1979 Effects of shock loading on the reflectance spectra of plagioclase, pyroxene and glass (abstract); Lunar Planet Sci. 10 1–3.Google Scholar
  4. Burns R G 1993 Mineralogical Applications of Crystal Field Theory; Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  5. Cloutis E A and Gaffey M J 1991 Pyroxene spectroscopy revisited: Spectral–compositional correlations and relationships to geothermometry; JGR 96 22,809–22,826.CrossRefGoogle Scholar
  6. Dhingra D et al 2011a Compositional diversity at Theophilus Crater: Understanding the geological context of Mg-spinel bearing central peaks; Geophys. Res. Lett. 38 L11201, doi: 10.1029/2011GL047314.CrossRefGoogle Scholar
  7. Dhingra D et al 2011b Non-linear spectral un-mixing using Hapke Modeling: Application to remotely acquired M3 spectra of spinel bearing lithologies on the moon, LPSC XXXXII, Abstract # 2431.Google Scholar
  8. Goswami J N and Annadurai M 2009 An overview of the Chandrayaan-1 Mission; Curr. Sci. 96(4) 486–491.Google Scholar
  9. Green R O, Pieters C M, Mouroulis P, Eastwood M, Boardman J, Glavich T, Isaacson P J, Annadurai M, Besse S, Barr D, Buratti B J, Cate D, Chatterjee A, Clark R, Cheek L, Combe J P, Dhingra D, Essandoh V, Geier S, Goswami J N, Green R, Haemmerle V, Head J W III, Hovland L, Hyman S, Klima R L, Koch T, Kramer G Y, Kumar A S K, Lee K, Lundeen S, Malaret E, McCord T B, McLaughlin S, Mustard J F, Nettles J W, Petro N E, Plourde K, Racho C, Rodriquez J, Runyon C, Sellar G, Smith C, Sobel H, Staid M I, Sunshine J M, Taylor L A, Thaisen K, Tompkins S, Tseng H, Vane G, Varanasi P, White M and Wilson D 2011 The Moon Mineralogy Mapper (M3) Imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation; J. Geophys. Res. 116 E00G19, doi: 10.1029/2011JE003797.CrossRefGoogle Scholar
  10. Klima R L, Pieters C M and Dyar M D 2007 Spectroscopy of synthetic Mg–Fe pyroxenes I: Spin-allowed and spin-forbidden crystal field bands in the visible and near-infrared; Meteorit. Planet. Sci. 42 235–253.CrossRefGoogle Scholar
  11. Klima R L, Dyar M D and Pieters C M 2010 Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure; Meteorit. Planet. Sci. 46(3) 379–395.CrossRefGoogle Scholar
  12. Lal D et al 2011 Identification of spinel group of minerals on central peak of crater Theophilus using Moon Mineralogy Mapper (M3) data from Chandrayaan-1 mission, LPSC XXXXII, Abstract # 1339.Google Scholar
  13. Melosh H J 1989 Impact cratering: A geologic process (New York, Oxford: Oxford University Press).Google Scholar
  14. Mustard J F and Sunshine J M 1995 Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites; Science 267 1623–1626.CrossRefGoogle Scholar
  15. Ohtake M et al 2008 Scientific objectives and specification of Selene multiband imager; Adv. Space Res. 42(2) 301–304.CrossRefGoogle Scholar
  16. Pieters C M 1982 Copernicus crater central peak: Lunar mountain of unique composition; Science 215 59–61.CrossRefGoogle Scholar
  17. Pieters C M 1986 Composition of the lunar highland crust from near-infrared spectroscopy; Rev. Geophys. 24 557–578.CrossRefGoogle Scholar
  18. Pieters C M et al 2009 The Moon Mineralogy Mapper (M) on Chandrayaan-1; Curr. Sci. 96(4) 500–505.Google Scholar
  19. Pieters C M et al 2010 Identification of a new spinel-rich lunar rock type by the Moon Mineralogy Mapper (M3), LPSC XXXXI, Abstract #1854.Google Scholar
  20. Pieters C M et al 2011 Mg-spinel lithology: A new rock type on the lunar farside; J. Geophys. Res. 116 E00G08, doi: 10.1029/2010JE003727.CrossRefGoogle Scholar
  21. Robinson M S et al 2010 Exploring the Moon at High-Resolution: First results from the lunar reconnaissance orbiter camera (LROC), 38th COSPAR Scientific Assembly, 18–15 July 2010, Bremen, Germany, p. 11.Google Scholar
  22. Spudis P D, Hawke B R and Lucey P G 1989 Geology and deposits of the lunar Nectaris basin 19th LPSC, pp. 51–59.Google Scholar
  23. Sunshine J M and McFadden L A 1993 Reflectance spectra of the Elephant Moraine A79,001 meteorite: Implications for remote sensing of planetary bodies; Icarus 105 79–91.CrossRefGoogle Scholar
  24. Sunshine J M et al 1990 Deconvolution of mineral absorption bands: An improved approach; J. Geophys. Res. 95(B5) 6955–6966.CrossRefGoogle Scholar
  25. Tompkins S and Carle P 1999 Mineralogy of the lunar crust: Results from Clementine; Meteor. Planet. Sci. 34 25–41.CrossRefGoogle Scholar
  26. Whitford-Stark J L 1981 The evolution of the Nectaris multi-ring basin; Icarus 48 393–427.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  • D LAL
    • 1
  • P CHAUHAN
    • 2
  • R D SHAH
    • 1
  • S BHATTACHARYA
    • 2
  • AJAI
    • 2
  • A S KIRAN KUMAR
    • 2
  1. 1.M.G. Science InstituteGujarat UniversityAhmedabadIndia
  2. 2.Space Applications Centre, (ISRO)AhmedabadIndia

Personalised recommendations