Journal of Earth System Science

, Volume 120, Issue 5, pp 851–858 | Cite as

GPS based TEC measurements for a period August 2008– December 2009 near the northern crest of Indian equatorial ionospheric anomaly region

  • S P KARIAEmail author

In recent years, measurements of total electron content (TEC) have gained importance with increasing demand for the GPS-based navigation applications in trans-ionospheric communications. To study the variation in ionospheric TEC, we used the data obtained from GPS Ionospheric Scintillation and TEC monitoring (GISTM) system which is in operation at SVNIT, Surat, India (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region. The data collected (for the low sunspot activity period from August 2008–December 2009) were used to study the diurnal, monthly, seasonal semi-annual and annual variations of TEC at Surat. It was observed that the diurnal variation at the region reaches its maximum value between 13:00 and 16:00 IST. The monthly average diurnal variations showed that the TEC maximizes during the equinox months followed by the winter months, and are lowest during the summer months. The ionospheric range delay to TEC for the primary GPS signal is 0.162 m per TECU. The diurnal variation in TEC shows a minimum to maximum variation of about 5 to 50 TECU (in current low sunspot activity periods). These TEC values correspond to range delay variations of about 1 to 9 m at Surat. These variations in the range delay will certainly increase in high sunspot activity periods. Detected TEC variations are also closely related to space weather characterizing quantities such as solar wind and geomagnetic activity indices.


Total electron content equatorial ionization anomaly (EIA) region ionosphere wave propagation GPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarons J 1982 Global morphology of ionospheric scintillations; Proceedings of IEEE 70 360–378.CrossRefGoogle Scholar
  2. Bailey G J, Su Y Z and Oyama K-I 2000 Yearly variations in the low latitude topside ionosphere; Ann. Geophys. 18 789–798.CrossRefGoogle Scholar
  3. Balan N, Otsuka Y and Fukao S 1997 New aspects in the annual variation of the ionosphere observed by the MU radar; Geophys. Res. Lett. 24 2287–2290.CrossRefGoogle Scholar
  4. Balan N, Otsuka Y, Fukao S, Abdu M A and Bailey G J 2000 Annual variations of the ionosphere: A review based on MU radar observations; Adv. Space Res. 25(1) 153–162.CrossRefGoogle Scholar
  5. Basu S and Basu Su 1981 Equatorial scintillations – a review; J. Atmos. Terr. Phys. 43 473–479.CrossRefGoogle Scholar
  6. Burch J L 2001 The fury of space; Scientific American, April 2001, pp. 72–80.Google Scholar
  7. Coco D S, Cockers Dahlke S R and Clynch J R 1991 Variability of GPS satellite instrumental group delay biases; IEEE Trans. Aerosp. Electron. Syst. 27(6) 931–938.CrossRefGoogle Scholar
  8. Dabas R, Sharma N, Pillaia M G K and Gwal A 2006 Day-to-day variability of equatorial and low latitude F region ionosphere in the Indian zone; J. Atmos. Sol.-Terr. Phys. 68 1269–1277.CrossRefGoogle Scholar
  9. Dasgupta A and Basu A 1973 Investigation of ionospheric electron content in the equatorial region as obtained by orbiting beacon satellites; Ann. Geophys. 29 409–419.Google Scholar
  10. Davies K 1980 Recent progress in satellite radio beacon studies with particular emphasis on the ATS-6 Radio beacon experiment; Space Sci. Rev. 25 357–430.CrossRefGoogle Scholar
  11. Davies K, Donnelly R F, Grubb R N and Rama Rao P V S 1979 ATS-6 satellite radio beacon measurements at Ootacamund, India; Radio Sci. 14 85–95.CrossRefGoogle Scholar
  12. Field P R, Rishbeth H, Moffett R J, Idenden D W, Millward G H and Aylward A D 1998 Modelling composition changes in F-layer storms; J. Atmos. Sol.–Terr. Phys. 60 523–543.CrossRefGoogle Scholar
  13. Forbes J M, Palo S E and Zhang X 2000 Variability of the ionosphere; J. Atmos. Sol.-Terr. Phys. 62 685–693.CrossRefGoogle Scholar
  14. Fuller-Rowell T J, Codrescu M and Wilkinson P 2000 Quantitative modelling of the ionospheric response to geomagnetic activity; Ann. Geophys. 18 766–781.CrossRefGoogle Scholar
  15. Iyer K N, Deshpande M R and Rastogi R G 1976 The equatorial anomaly in ionospheric total electron content and the equatorial electrojet current strength; Proc. Indian Acad. Sci. 84 129–138.Google Scholar
  16. Jakowski N, Heise S and Wehrenpfennig A 2001 TEC monitoring by GPS – A possible contribution to space weather monitoring; Phys. Chern. Earth (C) 26 609–613.Google Scholar
  17. Kane R P 1980 Irregular variations in the global distribution of total electron content; Radio Sci. 15 837–842.CrossRefGoogle Scholar
  18. Langley R 1996 Propagation of the GPS signals; In: GPS for geodesy (eds) Kleusberg A and Teunissen P (Berlin Heidelberg New York: Springer), pp. 103–140.CrossRefGoogle Scholar
  19. Langley R, Fedrizzi M, Paula E, Santos M and Komjathy A 2002 Mapping the low latitude ionosphere with GPS; GPS World 13(2) 41–46.Google Scholar
  20. Laštovička J 2006 Forcing of the ionosphere by waves from below; J. Atmos. Sol.-Terr. Phys. 68 479–497.CrossRefGoogle Scholar
  21. Leick A 1995 GPS Satellite Surveying (New York: John Wiley), 560p.Google Scholar
  22. Liu J Y, Tsa H F and Jung T K 1996 Total electron content obtained by using the global positioning system; Terr. Atmos. Ocean Sci. (China) 7 107–117.Google Scholar
  23. Mannucci A J, Wilson B D and Edwards C D 1993 A new method for monitoring the earth’s ionospheric total electron content using the GPS global network; Proc. ION GPS-93, Institule of Navigation, pp. 1323–1332.Google Scholar
  24. Millward G H, Moffett R J, Quegan S and Fuller-Rowell T J 1996 Ionospheric F2 layer seasonal and semiannual variations; J. Geophys. Res. 101 5149–5156.CrossRefGoogle Scholar
  25. Rama Rao P V S, Srirama Rao M and Satyam M 1977 Diurnal and seasonal trends in TEC values observed at Waltair; Indian J. Radio & Space Physics 6 233–235.Google Scholar
  26. Rama Rao P V S, Gopikrishnan S, Niranjan K, Prasad D S V V D and Uma G 2006 On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low latitude sector; Ann. Geophys. 24 2159–2168.CrossRefGoogle Scholar
  27. Rastogi R G and Sharma R P 1971 Ionospheric electron content at Ahmedabad (near the crest of equatorial anomaly) by using beacon satellite transmissions during half a solar cycle; Planet. Space Sci. 19 1505–1517.CrossRefGoogle Scholar
  28. Rastogi R G, Iyer K N and Bhattacharyya J C 1975 Total electron content of the ionosphere over the magnetic equator; Curr. Sci. 44 531–533.Google Scholar
  29. Rishbeth H and Mendillo M 2001 Patterns of F2-layer variability; J. Atmos. Sol.-Terr. Phys. 63 1661–1680.CrossRefGoogle Scholar
  30. Rishbeth H and Setty C S G K 1961 The F-layer at sunrise; J. Atmos. Terr. Phys. 21 263–276.CrossRefGoogle Scholar
  31. Sardon E, Rius A and Zarraoa N 1994 Estimation of the transmitter and the receiver differential biases and the ionospheric total electron content from Global Positioning System observations; Radio Sci. 29(3) 577–586.CrossRefGoogle Scholar
  32. Su Y Z, Bailey G J and Oyama K-I 1998 Annual and seasonal variations in the low-latitude topside ionosphere; Ann. Geophys. 16 974–985.CrossRefGoogle Scholar
  33. Titheridge J E 1974 Changes in atmospheric composition inferred from ionospheric production rates; J. Atmos. Terr. Phys. 36 1249–1254.CrossRefGoogle Scholar
  34. Van Dierendonck A J, Fenton P and Klobuchar J 1996 Commercial ionospheric scintillation monitoring receiver development and test results; Proc. Institute of Navigation’s 52nd Annual Technical Meeting, Cambridge, MA, pp. 573–582.Google Scholar
  35. Watanabe S, Oyama K-I and Abdu M A 1995 Computer simulation of electron and ion densities and temperatures in the equatorial F region and comparison with Hinotori results; J. Geophys. Res. 100(A8) 14,581–14,590.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.SV National Institute of TechnologyIchhanathIndia

Personalised recommendations