Journal of Earth System Science

, Volume 117, Issue 3, pp 227–236 | Cite as

On the impact of temperature on tropospheric ozone concentration levels in urban environments

  • E. Stathopoulou
  • G. Mihalakakou
  • M. Santamouris
  • H. S. BagiorgasEmail author


The influence of temperature on tropospheric ozone (O3) concentrations in urban and photochemically polluted areas in the greater Athens region are investigated in the present study. Hourly values of the ambient air temperature used for studying the urban heat island effect in Athens were recorded at twenty-three experimental stations while ozone concentration values were measured at three of the above-mentioned stations and for a period of two years (1996–1997). The linear correlation between ozone concentration and air temperature values as well as the temporal variation of temperature and ozone concentration, for the above-mentioned experimental stations, were calculated and analysed. Moreover, a neural network approach was used for investigating the impact of temperature on the ozone concentration values over the greater Athens area. The neural network model used ambient air temperature as one of its input parameters and it was found that temperature is a predominant parameter, affecting considerably the ozone concentration values.


Tropospheric ozone urban environment neural network models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul-Wahab S A and Al-Alawi S M 2002 Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks; Environ. Model. Softw. 17 219–228.CrossRefGoogle Scholar
  2. Barring L, Mattsso J O and Lindqvist S 1985 Canyon Geometry, street temperatures and urban heat island in Malmo, Sweden; J. Climatol. 5 433–444.CrossRefGoogle Scholar
  3. Bates D 1994 The effects of ozone on plants and people; In: Chemistry of the Atmosphere: Its Impact on Global Change (ed) J Calvert, (Oxford: Blackwell Scientific Publications) 239–244.Google Scholar
  4. Bojkov R 1986 Surface ozone during the second half of the nineteenth century; J. Clim. Appl. Metereol. 25 343–352.CrossRefGoogle Scholar
  5. Butković V, Cvita T and Klasinc L 1990 Photochemical ozone in the Mediterranean; Sci. Total Environ. 99 145–151.CrossRefGoogle Scholar
  6. Chakraborty K, Mehrotra K, Mohan C K and Ranka S 1992 Forecasting the behavior of multivariate time series using neural networks; Neural Networks 5 961–970.CrossRefGoogle Scholar
  7. Chameides W L and Davis D D 1982 Chemistry in the troposphere; Chem. Eng. News 60 38–52.Google Scholar
  8. Cichocki A and Unbehauen R 1993 Neural Networks for Optimisation and Signal Processing (Stuttgart: John Wiley & Sons).Google Scholar
  9. Cieslik S and Labatut A 1997 Ozone and heat fluxes over a Mediterranean pseudosteppe; Atmos. Environ. 31 177–184.CrossRefGoogle Scholar
  10. Clark T L and Karl T R 1982 Application of prognostic meteorological variables to forecasts of daily maximum one-hour ozone concentrations in the northeastern United States; J. Appl. Meteorol. 21 1662–1671.CrossRefGoogle Scholar
  11. Cody R P, Weisel C P, Birnbaum G and Lioy P J 1992 The effect of ozone associated with summertime photochemical smog on the frequency of asthma visits to hospital emergency departments; Environ. Res. 58 184–194.CrossRefGoogle Scholar
  12. Crutzen P J 1970 The influence of nitrogen oxides on the atmospheric ozone content; Q. J. Roy. Meteor. Soc. 96 320–325.CrossRefGoogle Scholar
  13. Crutzen P J 1998 How the atmosphere keeps itself clean and how this is affected by human activities?; Pure Appl. Chem. 70 1319–1326.CrossRefGoogle Scholar
  14. Danalatos D and Glavas S 1996 Diurnal and seasonal variations of surface ozone in a Mediterranean coastal site, Patras, Greece; Sci. Total Environ. 177 291–301.CrossRefGoogle Scholar
  15. Fabian P and Pruchniewicz P G 1977 Meridional distribution of ozone in the troposphere and its seasonal variation; J. Geophys. Res. 82 2063–2073.CrossRefGoogle Scholar
  16. Fishman J and Crutzen P 1978 The origin of ozone in the troposphere; Nature 274 855–858.CrossRefGoogle Scholar
  17. Glavas S 1999 Surface ozone and NOx concentrations at a high altitude Mediterranean site, Greece; Atmos. Environ. 33 3813–3820.CrossRefGoogle Scholar
  18. Grewe V 2004 Technical note: a diagnostic for ozone contributions of various NOx emissions in multi-decadal chemistry-climate model simulations; Atmos. Chem. Phys. Discuss. 4 729–736.CrossRefGoogle Scholar
  19. Grewe V 2006 The origin of ozone; Atmos. Chem. Phys. Discuss. 6 1495–1511.Google Scholar
  20. Grewe V 2007 Impact of climate variability on tropospheric ozone; Sci. Total Environ. 374 167–181.CrossRefGoogle Scholar
  21. Güsten H 1986 Formation, transport and control of photochemical smog, In: The handbook of environmental chemistry, (ed.) O Hutzinger (Berlin, Germany: Springer-Verlag) Vol. 4/Part A — Air pollution, 53–106.Google Scholar
  22. Güsten H, Heinrich G, Cvitas T, Klasinc L, Rus B, Lalas D P and Petrakis M 1988 Photochemical formation and transport of ozone in Athens, Greece; Atmos. Environ. 22 1855–1861.CrossRefGoogle Scholar
  23. Güsten H, Heinrich G, Weppner J, Abdel-Aal M M, Abdel-Hay F A, Ramadan A B, Tawfik F S, Ahmed D M, Hassan G K Y, Cvita T, Jeftić J and Klasinc L 1994 Ozone formation in the Greater Cairo Area; Sci. Total Environ. 155 285–295.CrossRefGoogle Scholar
  24. Güsten H, Heinrich G, Mönnich E, Sprung D, Weppner J, Ramadan A B, Ezz El-Din M R M, Ahmed D M and Hassan G K Y 1996 On-line measurements of ozone surface fluxes: Part II; Surface-level ozone fluxes onto the Sahara desert; Atmos. Environ. 30 911–918.CrossRefGoogle Scholar
  25. Güsten H, Heinrich G, Mönnich E, Weppner J, Cvita T, Klasinc L, Varotsos C A and Asimakopoulos D N 1997 Thessaloniki 91 field measurement campaign-II. Ozone formation in the Greater Thessaloniki Area; Atmos. Environ. 37 1115–1126.CrossRefGoogle Scholar
  26. Hales J 1996 Scientific background for AMS Policy Statement on Atmospheric Ozone; B. Am. Meteorol. Soc. 77 1249–1253.Google Scholar
  27. Hsu K J 2007 Relationships between ten-year trends of tropospheric ozone and temperature over Taiwan; Sci. Total Environ. 374 135–142.CrossRefGoogle Scholar
  28. Isaksen I S A 1998 Tropospheric Ozone. Regional and Global Scale Interactions. NATO ASI Series (Dordrecht: Kluwer) 227 425.Google Scholar
  29. Jacob D J, Logan J A and Murti P P 1999 Effects of rising Asian emissions on surface ozone in the United States; Geophys. Res. Lett. 26 2175–2178.CrossRefGoogle Scholar
  30. Kalabokas P D, Viras L G, Bartzis J and Repapis C C 2000 Mediterranean rural ozone characteristics around the urban area of Athens; Atmos. Environ. 34 5199–5208.CrossRefGoogle Scholar
  31. Kinney P L and Ozkaynak H 1991 Associations of daily mortality and air pollution in Los Angeles County; Environ. Res. 54 99–120.CrossRefGoogle Scholar
  32. Klasinc L and Cvita T 1996 The photosmog problem in the Mediterranean region; Mar. Chem. 53 111–119.CrossRefGoogle Scholar
  33. Kondratyev K and Varotsos C 2000 Atmospheric Ozone Variability (Springer Praxis Publishing).Google Scholar
  34. Kouvarakis G, Tsigaridis K, Kanakidou M and Mihalopoulos N 2000 Temporal variations of surface regional background ozone over Crete Island in the Southeast Mediterranean; J. Geophys. Res. 105 4399–4407.CrossRefGoogle Scholar
  35. Lalas D P, Tombrou-Tsella M, Petrakis M, Asimakopoulos D N and Helmis C G 1987 An experimental study of the vertical distribution of ozone over Athens; Atmos. Environ. 21 2681–2693.CrossRefGoogle Scholar
  36. Lelieveld J and Dentener F J 2000 What controls tropospheric ozone; J. Geophys. Res. 05(D3) 3531–3552.CrossRefGoogle Scholar
  37. Li M, Mehrota K, Mohan C K and Ranka S 1990 Sunspot numbers forecasting using neural networks; Proc. IEEE Symp. Intell. Control. 1 524–529.CrossRefGoogle Scholar
  38. Liu S C, Kley D, McFarland M, Mahlman J D and Levy H 1980 On the origin of tropospheric ozone; J. Geophys. Res. 85 7546–7552.CrossRefGoogle Scholar
  39. McKee D J 1994 Tropospheric Ozone. CRC Press (Boca Raton, FL) 333.Google Scholar
  40. Mihalakakou G, Santamouris M, Papanikolaou N, Cartalis C and Tsangrassoulis A 2004 Simulation of the urban heat island phenomenon in Mediterranean Climates; Pure Appl. Geophys. 161 429–451.CrossRefGoogle Scholar
  41. Nolle M, Ellul R, Heinrich G and Güsten H 2001 A long-term study of background ozone concentrations in the central Mediterranean — diurnal and seasonal variations on the island of Gozo, European Commission, Joint Research Centre, Institute for Environment and Sustainability, Climate Change Unit, A Changing Atmosphere 8th European symposium on the Physico-Chemical Behaviour of Atmospheric Pollutants, 17–20 September, Lingotto Conference Centre, Torino (Italy).Google Scholar
  42. Oke T R 1987 Boundary Layer Climates (London and New York: Routledge) 2nd edition.Google Scholar
  43. Oke T R, Johnson D G, Steyn D G and Watson I D 1991 Simulation of surface urban heat island under “ideal” conditions at night — Part 2: Diagnosis and causation; Bound.-Lay. Meteorol. 56 339–358.CrossRefGoogle Scholar
  44. Park H S 1986 Features of the heat island in Seoul and its surrounding cities; Atmos. Environ. 20 1859–1866.CrossRefGoogle Scholar
  45. Pont V and Fontan J 2000a Correlation between continental air mass and ozone concentrations; J. Geophys. Res. 105(D14) 17,699–17,707.CrossRefGoogle Scholar
  46. Pont V and Fontan J 2000b Local and regional contributions to photochemical atmospheric pollution in Southern France; Atmos. Environ. 34 5209–5223.CrossRefGoogle Scholar
  47. Rumelhart D E, Hinton G E and Williams R L 1986 Learning internal representations by error propagation, In: Parallel distributed processing (eds) D E Rumelhart and J L McClelland (Cambridge: MIT Press) 318–362.Google Scholar
  48. Santamouris M, Mihalakakou G, Papanikolaou N and Asimakopoulos D N 1999 A neural network approach for modeling the heat island phenomenon in urban areas during the summer period; Geophys. Res. Lett. 26 337–340.CrossRefGoogle Scholar
  49. Sanz M J and Millán M M 1998 The dynamics of aged air masses and ozone in the Western Mediterranean: Relevance to forest ecosystems; Chemosphere 36 1089–1094.CrossRefGoogle Scholar
  50. Sonnemann G 1992 Ozon-Natürliche Schwankungen und anthropogene Einflüsse. Akademie Verlag GmbH, Berlin, Germany.Google Scholar
  51. Staehelin J, Thudium J, Buehler R, Volz-Thomas A and Graber W 1994 Trends in surface ozone concentrations at Arosa (Switzerland); Atmos. Environ. 28 75–87.CrossRefGoogle Scholar
  52. Steinberger E H and Ganor E 1980 High ozone concentrations at night in Jerusalem and Tel-Aviv; Atmos. Environ. 14 221–225.CrossRefGoogle Scholar
  53. Tsani-Bazaca E, Glavas S and Güsten H 1988 Peroxyacetyl nitrate (PAN) concentrations in Athens, Greece; Atmos. Environ. 22 2283–2286.CrossRefGoogle Scholar
  54. USEPA 1986 Air quality criteria for ozone and other photochemical oxidants. Office of Research and Development, Washington, DC, USA 20460, EPA 600-84/020dF.Google Scholar
  55. Valero F, Luna Y, Martin M L and Sancho P 1992 Tropospheric ozone concentrations related to atmospheric conditions at Izana BAPMoN weather station, Canary Islands; Nuovo Cimento C 15 159–172.CrossRefGoogle Scholar
  56. Volz A and Kley D 1988 Evaluation of the Montsouris series of ozone measurements made in the nineteenth century; Nature 332 240–242.CrossRefGoogle Scholar
  57. Walcek C J and Yuan H H 1999 Calculated influence of temperature-related factors on ozone formation rates in the lower troposphere; J. Appl. Meteorol. 34 1056–1069.CrossRefGoogle Scholar
  58. WMO (World Meteorological Organization) 2003 Scientific assessment of ozone Depletion, Global Ozone Research and Monitoring Project, Rep., vol. 47.Google Scholar
  59. Ziomas I C 1998 The Mediterranean campaign of photochemical tracers-Transport and chemical evolution (Medcaphot-Trace): An outline; Atmos. Environ. 32 2045–2053.CrossRefGoogle Scholar
  60. Zurita E and Castro M 1983 A statistical analysis of mean hourly concentrations of surface ozone at Madrid (Spain); Atmos. Environ. 17 2213–2220.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  • E. Stathopoulou
    • 1
  • G. Mihalakakou
    • 2
  • M. Santamouris
    • 1
  • H. S. Bagiorgas
    • 2
    Email author
  1. 1.Department of Physics, Division of Applied Physics, Laboratory of MeteorologyUniversity of AthensAthensGreece
  2. 2.Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece

Personalised recommendations