Skip to main content
Log in

Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems

  • Review Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In recent times, the need for high-sensitive detection has grown drastically as more and more applications of molecular sensing are being explored. Cavity ring-down spectroscopy (CRDS) is one of the new age and robust techniques which has revolutionized the field of molecular detection, particularly gas-phase analysis. In this short review, we have first provided a brief introduction to the working principles and system requirements of CRDS. Subsequently, we have described the various applications of CRDS in detail, including environmental monitoring, biomedical analysis specifically human breath analysis and reaction chemistry. We have also focused on the importance of isotope analysis and their accurate measurements using CRDS and its variants. Furthermore, we described the use of CRDS in the condensed phase through evanescent wave (EW) coupled CRDS and discussed its applications in the investigation of interfacial kinetics, thin-film and biological detection. We also outlined certain variants of CRDS to give a glimpse of the different techniques which have emerged with CRDS. Hence, in this mini-review, we aimed to illustrate the use of the CRDS technique in various interdisciplinary fields.

Graphic abstract

SYNOPSIS The review provides an overview of the cavity ring-down spectroscopy (CRDS) technique and its variants. The applications of CRDS in environmental monitoring, biomedical diagnostics, reaction chemistry and isotope analysis for both the gas phase and the condensed phase molecules have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Reproduced from Ref. [41] with permission from The Royal Society of Chemistry.

Figure 4

Copyright permission from Ref. [55].

Figure 5

Open access permission from Ref. [59].

Figure 6

Reprinted with permission from Ref. [67]. Copyright (2015) American Chemical Society.

Figure 7

Copyright permission from Ref. [73].

Figure 8

Copyright (2020) American Chemical Society.

Figure 9

Copyright (2012) American Chemical Society.

Figure 10

Copyright permission from Ref. [105].

Figure 11

Reprinted with permission from Ref. [90]. Copyright (2020) American Chemical Society.

Similar content being viewed by others

References

  1. Atkinson D B 2003 Solving chemical problems of environmental importance using cavity ring-down spectroscopy Analyst 128 117

    CAS  PubMed  Google Scholar 

  2. Crosson E R 2008 A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapour Appl. Phys. B: Lasers Opt. 92 403

    CAS  Google Scholar 

  3. Sturm C, Zhang Q and Noone D 2010 An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology Clim. Past 6 115

    Google Scholar 

  4. Mander Ü, Ostonen I and Niinemets Ü 2017 Indicators of climate change adaptation from molecules to ecosystems Reg. Environ. Change 17 2055

    Google Scholar 

  5. Wang C and Sahay P 2009 Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits Sensors 9 8230

    CAS  PubMed  Google Scholar 

  6. Park J and Lin M C 1999 Kinetic Studies of Aromatic Radical Reactions by Cavity-Ring down Spectroscopy In Cavity-Ringdown Spectroscopy An Ultratrace-Absorption Measurement Technique K W Busch and M A Busch (Eds.) (ACS Symposium Series) 720 p.196

  7. Maithani S, Pal M, Maity A and Pradhan M 2017 Isotope selective activation: a new insight into the catalytic activity of urease RSC Adv. 7 31372

    CAS  Google Scholar 

  8. Brand W A, Geilmann H, Crosson E R and Rella C W 2009 Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures Rapid Commun. Mass Spectrom. 23 1879

    CAS  Google Scholar 

  9. Wahl E H, Fidric B, Rella C W, Koulikov S, Kharlamov B, Tan S, Kachanov A A, Richman B A, Crosson E R, Paldus B A, Kalaskar S and Bowling D R 2006 Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide Isot. Environ. Health Stud. 42 21

    CAS  Google Scholar 

  10. Martin N A, Ferracci V, Cassidy N and Hoffnagle J A 2016 The application of a cavity ring-down spectrometer to measurements of ambient ammonia using traceable primary standard gas mixtures Appl. Phys. B: Lasers Opt. 122 219

    Google Scholar 

  11. Hancock G and Kasyutich V L 2004 UV cavity enhanced absorption spectroscopy of the hydroxyl radical Appl. Phys. B: Lasers Opt. 79 383

    CAS  Google Scholar 

  12. Atkinson D B and Hudgens J W 1997 Chemical kinetic studies using ultraviolet cavity ring-down spectroscopic detection: self-reaction of ethyl and ethyl peroxy radicals and the reaction O2+ C2H5→ C2H5O2 J. Phys. Chem. A 101 3901

    CAS  Google Scholar 

  13. Gong Z, Pan Y L and Wang C 2017 Characterization of single airborne particle extinction using the tunable optical trap-cavity ring down spectroscopy (OT-CRDS) in the UV Opt. Express 25 6732

    Google Scholar 

  14. Lin M C and Lin K C 2012 Interaction between crystal violet and anionic surfactants at silica/water interface using evanescent wave-cavity ring-down absorption spectroscopy J. Colloid Interface Sci. 379 41

    CAS  PubMed  Google Scholar 

  15. Engeln R, Helden G V, van Roij A J A and Meijer G 1999 Cavity ring down spectroscopy on solid C60 J. Chem. Phys. 110 2732

    CAS  Google Scholar 

  16. Lehmann K K, Berden G and Engeln R 2009 In Cavity ring-down spectroscopy: techniques and applications G Berden and R Engeln (Ed.) (John Wiley & Sons) p. 1

  17. O’Keefe A and Deacon D A G 1988 Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources Rev. Sci. Instrum. 59 2544

    Google Scholar 

  18. Kosterev A A, Malinovsky A L, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L and Cho A Y 2001 Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser Appl. Opt. 40 5522

    CAS  Google Scholar 

  19. Jongma R T, Boogaarts M G H, Holleman I and Meijer G 1995 Trace gas detection with cavity ring down spectroscopy Rev. Sci. Instrum. 66 2821

    CAS  Google Scholar 

  20. Awtry A R and Miller J H 2002 Development of a cw-laser-based cavity-ringdown sensor aboard a spacecraft for trace air constituents Appl. Phys. B: Lasers Opt. B 75 255

    CAS  Google Scholar 

  21. Dubé W P, Brown S S, Osthoff H D, Nunley M R, Ciciora S J, Paris M W, McLaughlin R J and Ravishankara A R 2006 Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy Rev. Sci. Instrum. 77 034101

    Google Scholar 

  22. Karpf A, Qiao Y and Rao G N 2016 Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy Appl. Opt. 55 4497

    CAS  Google Scholar 

  23. Wagner N L, Dubé W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B and Brown S S 2011 Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft Atmos. Meas. Tech. 4 1227

    CAS  Google Scholar 

  24. Washenfelder R A, Wagner N L, Dube W P and Brown S S 2011 Measurement of atmospheric ozone by cavity ring-down spectroscopy Environ. Sci. Technol. 45 2938

    CAS  Google Scholar 

  25. Grilli R, Legrand M, Kukui A, Méjean G, Preunkert S and Romanini D 2013 First investigations of IO, BrO, and NO2 summer atmospheric levels at a coastal East Antarctic site using mode-locked cavity enhanced absorption spectroscopy Geophys. Res. Lett. 40 791

    CAS  Google Scholar 

  26. Hanisco T F, Moyer E J, Weinstock E M, St. Clair J M, Sayres D S, Smith J B, Lockwood R, Anderson J G, Dessler A E, Keutsch F N, Spackman J R, Read W G and Bui T P 2007 Observations of deep convective influence on stratospheric water vapor and its isotopic composition Geophys. Res. Lett. 34 L04814

    Google Scholar 

  27. Richardson S J, Miles N L, Davis K J, Crosson E R, Rella C W and Andrews A E 2012 Field testing of cavity ring-down spectroscopy analyzers measuring carbon dioxide and water vapor J. Atmos. Oceanic Technol. 29 397

    Google Scholar 

  28. Mikhailenko S N, Naumenko O V, Nikitin A V, Vasilenko I A, Liu A-W, Song K-F, Ni H-Y and Hu S-M 2012 Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm−1 J. Quant. Spectrosc. Radiat. Transfer 113 653

    CAS  Google Scholar 

  29. Liu A-W, Naumenko O V, Kassi S and Campargue A 2014 CW-Cavity Ring Down Spectroscopy of deuterated water in the 1.58 μm atmospheric transparency window J. Quant. Spectrosc. Radiat. Transfer 138 97

  30. Crosson E R, Ricci K N, Richman B A, Chilese F C, Owano T G, Provencal R A, Todd M W, Glasser J, Kachanov A A, Paldus B A, Spence T G and Zare R N 2002 Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath Anal. Chem. 74 2003

    CAS  Google Scholar 

  31. Lis G, Wassenaar L I and Hendry M J 2008 High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples Anal. Chem. 80 287

    CAS  Google Scholar 

  32. Kerstel E R T, Iannone R Q, Chenevier M, Kassi S, Jost H-J and Romanini D 2006 A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications Appl. Phys. B: Lasers Opt. B 85 397

    CAS  Google Scholar 

  33. Steig E J, Gkinis V, Schauer A J, Schoenemann S W, Samek K, Hoffnagle J, Dennis K J and Tan S M 2014 Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance Atmos. Meas. Tech. 7 2421

    CAS  Google Scholar 

  34. Miles N L, Martins D K, Richardson S J, Rella C W, Arata C, Lauvaux T, Davis K J, Barkley Z R, McKain K and Sweeney C 2018 Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and delta (CH4)-C-13 deployed on towers in the Marcellus Shale region Atmos. Meas. Tech. 11 1273

    CAS  Google Scholar 

  35. Tait D R, Maher D T, Wong W W, Santos I R, Sadat-Noori M, Holloway C and Cook P L M 2017 Greenhouse gas dynamics in a salt-wedge estuary revealed by high resolution cavity ring-down spectroscopy observations Environ. Sci. Technol. 51 13771

    CAS  Google Scholar 

  36. Banik G D, Maity A, Som S, Pal M and Pradhan M 2018 An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing Laser Phys. 28 045701

  37. Banik G D, Som S, Maity A, Pal M, Maithani S, Mandal S and Pradhan M 2017 An EC-QCL based N2O sensor at 5.2 μm using cavity ring-down spectroscopy for environmental applications Anal. Methods 9 2315

  38. Maity A, Pal M, Banik G D, Maithani S and Pradhan M 2017 Cavity ring-down spectroscopy using an EC-QCL operating at 7.5 µm for direct monitoring of methane isotopes in air Laser Phys. Lett. 14 115701

  39. Maithani S, Mandal S, Maity A, Pal M and Pradhan M 2018 High-resolution spectral analysis of ammonia near 6.2 μm using a cw EC-QCL coupled with cavity ring-down spectroscopy Analyst 143 2109

  40. Pradhan M, Aziz M S I, Grilli R and Orr-Ewing A J 2008 Automated system for monitoring trace C2H2 in ambient air by cavity ring-down spectroscopy combined with sample preconcentration Environ. Sci. Technol. 42 7354

    CAS  Google Scholar 

  41. Aziz M S I and Orr-Ewing A J 2012 Development and application of an optical sensor for ethene in ambient air using near infra-red cavity ring down spectroscopy and sample preconcentration J. Environ. Monit. 14 3094

    CAS  PubMed  Google Scholar 

  42. Parkes A M, Lindley R E and Orr-Ewing A J 2004 Combining preconcentration of air samples with cavity ring-down spectroscopy for detection of trace volatile organic compounds in the atmosphere Anal. Chem. 76 7329

    CAS  Google Scholar 

  43. Vasudev R, Usachev A and Dunsford W R 1999 Detection of toxic compounds by cavity ring-down spectroscopy Environ. Sci. Technol. 33 1936

    CAS  Google Scholar 

  44. Todd M W, Provencal R A, Owano T G, Paldus B A, Kachanov A, Vodopyanov K L, Hunter M, Coy S L, Steinfeld J I and Arnold J T 2002 Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 μm) optical parametric oscillator Appl. Phys. B: Lasers Opt. B 75 367

    CAS  Google Scholar 

  45. Thompson J E, Smith B W and Winefordner J D 2002 Monitoring atmospheric particulate matter through cavity ring-down spectroscopy Anal. Chem. 74 1962

    CAS  Google Scholar 

  46. Maithani S, Maity A and Pradhan M 2019 High-resolution spectral analysis of hybrid A/B-type band of 1, 3-butadiene at 6.2 μm using an EC-QCL coupled with cavity ring-down spectroscopy Chem. Phys. 522 123

  47. Panda B, Maithani S and Pradhan M 2020 High-resolution investigation of temperature and pressure-induced spectroscopic parameters of 13C-isotopomer of CH4 in the ν4 band using cavity ring-down spectroscopy Chem. Phys. 535 110769

    CAS  Google Scholar 

  48. Banik G D, Som S, Maity A and Pradhan M 2018 Cavity ring-down spectroscopy measurements of l-type doubling of hot bands in Δ vibrational states of OCS near 5.2 μm J. Phys. Commun. 2 045014

  49. Cheskis S, Derzy I, Lozovsky V A, Kachanov A and Romanini D 1998 Cavity ring-down spectroscopy of OH radicals in low pressure flame Appl. Phys. B: Lasers Opt. B 66 377

    CAS  Google Scholar 

  50. Mercier X, Jamette P, Pauwels J F and Desgroux P 1999 Absolute CH concentration measurements by cavity ring-down spectroscopy in an atmospheric diffusion flame Chem. Phys. Lett. 305 334

    CAS  Google Scholar 

  51. Xie J, Paldus B A, Wahl E H, Martin J, Owano T G, Kruger Ch H, Harris J S and Zare R N 1998 Near-infrared cavity ringdown spectroscopy of water vapor in an atmospheric flame Chem. Phys. Lett. 284 387

    CAS  Google Scholar 

  52. McCurdy M R, Bakhirkin Y A, Wysocki G and Tittel F K 2007 Performance of an exhaled nitric oxide and carbon dioxide sensor using quantum cascade laser-based integrated cavity output spectroscopy J. Biomed. Opt. 12 034034

    PubMed  Google Scholar 

  53. Som S, Maity A, Banik G D, Ghosh C, Chaudhuri S, Daschakraborty S B, Ghosh S and Pradhan M 2014 Excretion kinetics of 13C-urea breath test: influences of endogenous CO2 production and dose recovery on the diagnostic accuracy of Helicobacter pylori infection Anal. Bioanal. Chem. 406 5405

    CAS  Google Scholar 

  54. Maity A, Som S, Ghosh C, Banik G D, Daschakraborty S B, Ghosh S, Chaudhuri S and Pradhan M 2014 Oxygen-18 stable isotope of exhaled breath CO2 as a non-invasive marker of Helicobacter pylori infection J. Anal. At. Spectrom. 29 2251

    CAS  Google Scholar 

  55. Maity A, Pal M, Som S, Maithani S, Chaudhuri S and Pradhan M 2017 Natural 18O and 13C-urea in gastric juice: a new route for non-invasive detection of ulcers Anal. Bioanal. Chem. 409 193

    CAS  Google Scholar 

  56. Som S, Banik G D, Maity A, Chaudhuri S and Pradhan M 2018 Exhaled nitric oxide as a potential marker for detecting non-ulcer dyspepsia and peptic ulcer disease J. Breath Res. 12 026005

    PubMed  Google Scholar 

  57. Pal M, Maithani S, Maity A, Chaudhuri S and Pradhan M 2018 Exploring the physiological link of breath N2O through nitrification and denitrification processes in human gastric juice J. Breath Res. 13 016002

    PubMed  Google Scholar 

  58. Banik G D, Maity A, Som S, Ghosh C, Daschakraborty S B, Chaudhuri S, Ghosh S and Pradhan M 2014 Diagnosis of small intestinal bacterial overgrowth in irritable bowel syndrome patients using high-precision stable 13CO2/12CO2 isotope ratios in exhaled breath J. Anal. At. Spectrom. 29 1918

    CAS  Google Scholar 

  59. Ghosh C, Banik G D, Maity A, Som S, Chakraborty A, Selvan C, Ghosh S, Chowdhury S and Pradhan M 2015 Oxygen-18 isotope of breath CO2 linking to erythrocytes carbonic anhydrase activity: a biomarker for pre-diabetes and type 2 diabetes Sci. Rep. 5 1

    Google Scholar 

  60. Ghosh C, Mandal S, Banik G D, Maity A, Mukhopadhyay P, Ghosh S and Pradhan M 2016 Targeting erythrocyte carbonic anhydrase and 18O-isotope of breath CO2 for sorting out type 1 and type 2 diabetes Sci. Rep. 6 35836

    CAS  Google Scholar 

  61. Ghosh C, Mandal S, Pal M, Mukhopadhyay P, Ghosh S and Pradhan M 2017 13C isotopic abundances in natural nutrients: a newly formulated test meal for non-invasive diagnosis of type 2 diabetes J. Breath Res. 11 026005

    PubMed  Google Scholar 

  62. Mandal S, Mukhopadhyay P, Ghosh C, Pal M, Banik G D, Chatterjee T, Ghosh S and Pradhan M 2018 Isotope-specific breath analysis to track the end-stage renal disease during hemodialysis J. Breath Res. 12 036019

    CAS  PubMed  Google Scholar 

  63. Sun M, Jiang C, Gong Z, Zhao X, Chen Z, Wang Z, Kang M, Li Y and Wang C 2015 A fully integrated standalone portable cavity ringdown breath acetone analyzer Rev. Sci. Instrum. 86 095003

    Google Scholar 

  64. Wang C, Mbi A and Shepherd M 2009 A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C IEEE Sens. J. 10 54

  65. Wang C, Scherrer S T and Hossain D 2004 Measurements of cavity ringdown spectroscopy of acetone in the ultraviolet and near-infrared spectral regions: Potential for development of a breath analyzer Appl. Spectrosc58 784

    CAS  Google Scholar 

  66. Chen W, Roslund K, Fogarty C L, Pussinen P J, Halonen L, Groop P H, Metsälä M and Lehto M 2016 Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy Sci. Rep. 6 22577

    CAS  Google Scholar 

  67. Gianella M and Ritchie G A D 2015 Cavity-enhanced near-infrared laser absorption spectrometer for the measurement of acetonitrile in breath Anal. Chem. 87 6881

    CAS  Google Scholar 

  68. Neri G, Lacquaniti A, Rizzo G, Donato N, Latino M and Buemi M 2012 Real-time monitoring of breath ammonia during haemodialysis: use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques Nephrol. Dial. Transplant. 27 2945

    CAS  Google Scholar 

  69. Tattersall J E, DeTakats D, Chamney P, Greenwood R N and Farrington K 1996 The post-hemodialysis rebound: predicting and quantifying its effect on Kt/V Kidney Int. 50 2094

    CAS  PubMed  Google Scholar 

  70. Manne J, Sukhorukov O, Jäger W and Tulip J 2006 Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath Appl. Opt. 45 9230

    Google Scholar 

  71. Parameswaran K R, Rosen D I, Allen M G, Ganz A M and Risby T H 2009 Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements Appl. Opt. 48 B73

    CAS  Google Scholar 

  72. Arslanov D D, Swinkels K, Cristescu S M and Harren F J M 2011 Real-time, subsecond, multicomponent breath analysis by optical parametric oscillator based off-axis integrated cavity output spectroscopy Opt. Express 19 24078

    CAS  Google Scholar 

  73. Tarsa P B, Wist A D, Rabinowitz P and Lehmann K K 2004 Single-cell detection by cavity ring-down spectroscopy Appl. Phys. Lett. 85 4523

    CAS  Google Scholar 

  74. Kratochwil N A, Dueker S R, Muri D, Senn C, Yoon H, Yu B Y, Lee G H, Dong F and Otteneder M B 2018 Nanotracing and cavity-ring down spectroscopy: A new ultrasensitive approach in large molecule drug disposition studies PLoS One 13 e0205435

    PubMed  PubMed Central  Google Scholar 

  75. Cone M T, Mason J D, Figueroa E, Hokr B H, Bixler J N, Castellanos C C, Noojin G D, Wigle J C, Rockwell B A, Yakovlev V V and Fry E S 2015 Measuring the absorption coefficient of biological materials using integrating cavity ring-down spectroscopy Optica 2 162

    CAS  Google Scholar 

  76. Tonokura K, Ogura T and Koshi M 2004 Near-UV absorption spectrum of the phenoxyl radical and kinetics of its reaction with CH3 J. Phys. Chem. A 108 7801

    CAS  Google Scholar 

  77. Atkinson D B, Hudgens J W and Orr-Ewing A J 1999 Kinetic studies of the reactions of IO radicals determined by cavity ring-down spectroscopy J. Phys. Chem. A 103 6173

    CAS  Google Scholar 

  78. Atkinson D B and Hudgens J W 1999 Rate coefficients for the propargyl radical self-reaction and oxygen addition reaction measured using ultraviolet cavity ring-down spectroscopy J. Phys. Chem. A 103 4242

    CAS  Google Scholar 

  79. Tang M J, Thieser J, Schuster G and Crowley J N 2012 Kinetics and mechanism of the heterogeneous reaction of N2O5 with mineral dust particles Phys. Chem. Chem. Phys. 14 8551

    CAS  Google Scholar 

  80. Zarzana K J, Haan D O D, Freedman M A, Hasenkopf C A and Tolbert M A 2012 Optical properties of the products of α-dicarbonyl and amine reactions in simulated cloud droplets Environ. Sci. Technol. 46 4845

    CAS  Google Scholar 

  81. Mondal K, Kaipara R and Rajakumar B 2019 Investigation of the Absorption Cross Section of Phenyl Radical and Its Kinetics with Methanol in the Gas Phase Using Cavity Ring-Down Spectroscopy and Theoretical Methodologies J. Phys. Chem. A 123 9682

    CAS  PubMed  Google Scholar 

  82. Bechtel K L, Zare R N, Kachanov A A, Sanders S S and Paldus B A 2005 Moving beyond Traditional UV–Visible Absorption Detection: Cavity Ring-Down Spectroscopy for HPLC Anal. Chem. 77 1177

    CAS  Google Scholar 

  83. Paul J B, Provencal R A, Chapo C, Roth K, Casaes R and Saykally R J 1999 Infrared cavity ringdown spectroscopy of the water cluster bending vibrations J. Phys. Chem. A 103 2972

    CAS  Google Scholar 

  84. Huneycutt A J, Stickland R J, Hellberg F and Saykally R J 2003 Infrared cavity ringdown spectroscopy of acid–water clusters: HCl–H2O, DCl–D2O, and DCl–(D2O)2 J. Chem. Phys. 118 1221

    CAS  Google Scholar 

  85. Gomez A L, Park J, Walser M L, Lin A and Nizkorodov S A 2006 UV photodissociation spectroscopy of oxidized undecylenic acid films J. Phys. Chem. A 110 3584

    CAS  PubMed  Google Scholar 

  86. Assaf E, Sheps L, Whalley L, Heard D, Tomas A, Schoemaecker C and Fittschen C 2017 The reaction between CH3O2 and OH radicals: product yields and atmospheric implications Environ. Sci. Technol. 51 2170

    CAS  Google Scholar 

  87. Maithani S, Panda B, Maity A and Pradhan M 2020 Gas-Phase Isotopic Fractionation Study of Singly and Doubly Deuterated Isotopologues of Water in the H–D Exchange Reaction by Cavity Ring-Down Spectroscopy J. Phys. Chem. A 124 1104

    CAS  PubMed  Google Scholar 

  88. Pal M, Maithani S, Maity A and Pradhan M 2019 Simultaneous monitoring of 32S, 33S and 34S isotopes of H2S using cavity ring-down spectroscopy with a mid-infrared external-cavity quantum cascade laser J. Anal. At. Spectrom. 34 860

    CAS  Google Scholar 

  89. Gilb S, Hartl K, Kartouzian A, Peter J, Heiz U, Boyen H-G and Ziemann P 2007 Cavity ring-down spectroscopy of metallic gold nanoparticles Eur. Phys. J. D 45 501

    CAS  Google Scholar 

  90. Maithani S, Maity A and Pradhan M 2020 A prototype evanescent wave-coupled cavity ring-down spectrometer for probing real-time aggregation kinetics of gold and silver nanoparticles Anal. Chem. 92 3998

    CAS  Google Scholar 

  91. Pipino A C R, Hudgens J W and Huie R E 1997 Evanescent wave cavity ring-down spectroscopy for probing surface processes Chem. Phys. Lett. 280 104

    CAS  Google Scholar 

  92. Pipino A C R 1999 Ultrasensitive surface spectroscopy with a miniature optical resonator Phys. Rev. Lett. 83 3093

    CAS  Google Scholar 

  93. Shaw A M, Hannon T E, Li F and Zare R N 2003 Adsorption of Crystal Violet to the Silica–Water Interface Monitored by Evanescent Wave Cavity Ring-Down Spectroscopy J. Phys. Chem. B 107 7070

    CAS  Google Scholar 

  94. Fan H-F, Li F, Zare R N and Lin K-C 2007 Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy Anal. Chem. 79 3654

    CAS  Google Scholar 

  95. Chen M-S, Fan H-F and Lin K-C 2010 Kinetic and thermodynamic investigation of Rhodamine B adsorption at solid/solvent interfaces by use of evanescent-wave cavity ring-down spectroscopy Anal. Chem. 82 868

    CAS  Google Scholar 

  96. Zhang M, Powell H V, Mackenzie S R and Unwin P R 2010 Kinetics of Porphyrin Adsorption and DNA-Assisted Desorption at the Silica–Water Interface Langmuir 26 4004

  97. Sneppen L V D, Hancock G, Kaminski C, Laurila T, Mackenzie S R, Neil S R T, Peverall R, Ritchie G A D, Schnippering M and Unwin P R 2010 Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources Analyst 135 133

    PubMed  Google Scholar 

  98. Schnippering M, Powell H V, Zhang M, Macpherson J V, Unwin P R, Mazurenka M and Mackenzie S R 2008 Surface assembly and redox dissolution of silver nanoparticles monitored by evanescent wave cavity ring-down spectroscopy J. Phys. Chem. C 112 15274

    CAS  Google Scholar 

  99. Mazurenka M, Wilkins L, Macpherson J V, Unwin P R and Mackenzie S R 2006 Evanescent wave cavity ring-down spectroscopy in a thin-layer electrochemical cell Anal. Chem. 78 6833

    CAS  Google Scholar 

  100. Li F and Zare R N 2005 Molecular orientation study of methylene blue at an air/fused-silica interface using evanescent-wave cavity ring-down spectroscopy J. Phys. Chem. B 109 3330

    CAS  PubMed  Google Scholar 

  101. Hannon T E, Chah S and Zare R N 2005 Evanescent-wave cavity ring-down investigation of polymer/solvent interactions J. Phys. Chem. B 109 7435

    CAS  PubMed  Google Scholar 

  102. Powell H V, O’Connell M A, Zhang M, Mackenzie S R and Unwin P R 2012 Evanescent Wave Cavity Ringdown Spectroscopy: A Platform for the Study of Supported Lipid Bilayers Anal. Chem. 84 2585

    CAS  Google Scholar 

  103. Martin W B, Mirov S B, Martyshkin D V, Venugopalan R and Shaw A M 2005 Hemoglobin adsorption isotherm at the silica-water interface with evanescent wave cavity ring-down spectroscopy J. Biomed. Opt. 10 024025

    PubMed  Google Scholar 

  104. Everest M A, Black V M, Haehlen A S, Haveman G A, Kliewer C J and Neill H A 2006 Hemoglobin adsorption to silica monitored with polarization-dependent evanescent-wave cavity ring-down spectroscopy J. Phys. Chem. B 110 19461

    CAS  PubMed  Google Scholar 

  105. Wang X, Hinz M, Vogelsang M, Welsch T, Kaufmann D and Jones H 2008 A new approach to detecting biologically active substances with evanescent-wave cavity ring-down spectroscopy Chem. Phys. Lett. 467 9

    CAS  Google Scholar 

  106. Rooth M and Shaw A M 2007 pH-controlled formation kinetics of self-assembled layers of thioctic acid on gold nanoparticles J. Phys. Chem. C 111 15363

    CAS  Google Scholar 

  107. Thorpe M J, Moll K D, Jones R J, Safdi B and Ye J 2006 Broadband cavity ring down spectroscopy for sensitive and rapid molecular detection Science 311 1595

    CAS  PubMed  Google Scholar 

  108. Dahmani B, Hollberg L and Drullinger R 1987 Frequency stabilization of semiconductor lasers by resonant optical feedback Opt. Lett. 12 876

    CAS  Google Scholar 

  109. Ye J, Ma L S and Hall J L 1998 Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy J. Opt. Soc. Am. B 15 6

    CAS  Google Scholar 

  110. Truong G W, Douglass K O, Maxwell S E, van Zee R D, Plusquellic D F, Hodges J T and Long D A 2013 Frequency-agile, rapid scanning spectroscopy Nat. Photonics 7 532

    CAS  Google Scholar 

Download references

Acknowledgement

Dr. Pradhan gratefully acknowledges the funding from the SERB, Department of Science and Technology (DST), Govt. of India (Grant No: SB/S2/LOP-18/2013), the funding from the Ministry of Earth Sciences (MoES), Govt. of India (Grant No: MoES/16/26/12-RDEAS) and the ‘Rapid Grant for Young Investigators (No. BT/PR6683/GBD/27/477/2012)’ from the Department of Biotechnology (DBT, India). S. Maithani acknowledges the DST-Inspire Fellowship for doctoral research from Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MANIK PRADHAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MAITHANI, S., PRADHAN, M. Cavity ring-down spectroscopy and its applications to environmental, chemical and biomedical systems. J Chem Sci 132, 114 (2020). https://doi.org/10.1007/s12039-020-01817-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01817-x

Keywords

Navigation