Advertisement

Journal of Chemical Sciences

, 132:22 | Cite as

Vinylic-thiocarboxylate complexes of iron: synthesis, characterization and reactions

  • Mohammad El-KhateebEmail author
  • Khaleel J Asali
  • Batool Al-Juneidi
  • Hassan Abul-Futouh
  • Helmar Görls
  • Wolfgang Weigand
Regular Article

Abstract

Half-sandwich iron thiocarboxylate complexes of the general formula CpFe(CO)2SCOCH=C(R′)(R″){R′ = H, R″ = Me, R′ = R″ = Me, R′ = H, R″ = CH=CHMe}) are obtained from the reaction of (µ-Sx)[CpFe(CO)2]2 (x = 1–5) with the vinyl acid chlorides ClCOCH=C(R′)(R″). The substitution reaction of CpFe(CO)2SCOCH=C(R)Me with EPh3 produced the monosubstituted complexes CpFe(CO)(EPh3)SCOCH=C(R)Me (R = Me, E = P, R = H, E = As, Sb). All the new complexes have been characterized by UV-Vis, IR, 1H-NMR, 13C{1H}-NMR, 31P{1H}-NMR spectroscopy and elemental analysis. The solid state structures and the cyclic voltammetric measurements of CpFe(CO)2SCOCH=CMe2 and CpFe(CO)(PPh3)SCOCH=CMe2 were determined.

Graphic abstract

Half-sandwich iron thiocarboxylate complexes of the general formula CpFe(CO)2SCOCH=C(R′)(R″){R′ = H, R″ = Me, R′ = R″ = Me, R′ = H, R″ = CH=CHMe}) are obtained from the reaction of (µ-Sx)[CpFe(CO)2]2 (x = 1–5) with the vinyl acid chlorides ClCOCH=C(R′)(R″). The substitution reaction of CpFe(CO)2SCOCH=C(R)Me with EPh3 produced the monosubstituted complexes CpFe(CO)(EPh3)SCOCH=C(R)Me (R = Me, E = P, R = H, E = As, Sb). All the new complexes have been characterized by UV-Vis, IR, 1H-NMR, 13C{1H}-NMR, 31P{1H}-NMR spectroscopy and elemental analysis. The solid state structures and the cyclic voltammetric measurements of CpFe(CO)2SCOCH=CMe2 and CpFe(CO)(PPh3)SCOCH=CMe2 were determined.

Keywords

Iron Vinyl thiocarboxylate Substitution Structures 

Notes

Acknowledgements

The financial support (grant no. 496/2018) from the Deanship of Scientific Research, Jordan University of Science and Technology is gratefully acknowledged.

References

  1. 1.
    Wachter J 1989 Synthesis, structure and reactivity of sulfur‐rich cyclopentadienyl‐transition metal complexes: sulfur chemistry from an organometallic point of view Angew. Chem. Int. Eng. Ed. 28 1613CrossRefGoogle Scholar
  2. 2.
    W Weigand and P Schollhammer (Eds.) 2015 Bioinspired Catalysis: Metal-Sulfur Complexes (Berlin, Germany: Wiley Interscience)Google Scholar
  3. 3.
    Yuki M, Miyake Y and Nishibayash Y 2012 Synthesis of sulfur- and nitrogen- bridged diiron complexes and catalytic behavior toward hydrazines Organometallics 31 2953CrossRefGoogle Scholar
  4. 4.
    Hagen J 2006 Industrial catalysis: a practical approach (Berlin, Germany: Wiley Interscience)Google Scholar
  5. 5.
    Daraosheh A Q, Harb M K, Windhager J, Görls H, El-khateeb M and Weigand W 2009 Substitution reactions at [FeFe] hydrogenase models containing [2Fe3S] assembly by phosphine or phosphite ligands Organometallics 28 6275CrossRefGoogle Scholar
  6. 6.
    Abul-Futouh H, Almazahreh L R, Harb M K, Görls H, El-khateeb M and Weigand W 2017 [FeFe]-hydrogenase H-cluster mimics with various −S(CH2)nS– linker lengths (n = 2–8): a systematic study Inorg. Chem. 56 10437CrossRefGoogle Scholar
  7. 7.
    El-Hinnawi M A, El-khateeb M, Jibril I and Abu-Orabi S T 1989 Organometallic sulfur complexes. IV. Synthesis and characterization of [Fe(ButC5H4)(CO)2]2 and [Fe(1,3-di-ButC5H3)(CO)2]2 and the S-bonded thiocarboxylate derivatives Fe(ButC5H4)(CO)2SCOR and Fe(1,3-di-ButC5H3)(CO)2SCOR Synth. Reac. Inorg. Met. Org. Chem. 19 809CrossRefGoogle Scholar
  8. 8.
    El-khateeb M, Al-Noaimi M, Al-Akhras A, Görls H and Weigand W 2012 Heterocyclic thiocarboxylato complexes of iron: synthesis, characterization, electrochemistry and reactions J. Coord. Chem. 65 2510CrossRefGoogle Scholar
  9. 9.
    El-khateeb M, Görls H and Weigand W 2006 Cyclopentadienyl ruthenium alkynyldithiocarboxylate complexes J. Organomet. Chem. 691 5816Google Scholar
  10. 10.
    El-khateeb M, Rüffer T and Lang H 2006 Molybdenum S-bonded mono-thiocarboxylate complexes CpMo(CO)3SCOR: structure of CpMo(CO)3SCOPh Polyhedron 25 3413CrossRefGoogle Scholar
  11. 11.
    El-khateeb M, Asali K J, Shaheen M, Rababa’ah A 2008 Bimetallic ruthenium thiocarboxylate complexes: (µ-Z)[CpRu(L)(L’)SCO] 2 (Z = 1,4-C6H4, 1,3-C6H4, (CH2)4) Jord. J. Chem. 3 33Google Scholar
  12. 12.
    El-khateeb M, Jazzazi T M A, Görls H, Al-Shboul TMA and Westerhausen M 2011 Synthesis and characterization of ruthenium heterocyclic-thiocarboxylate complexes Trans. Met. Chem. 36 29CrossRefGoogle Scholar
  13. 13.
    Schenk W, Sonnhalter N and Burzlaff N 1997 Synthesis of Cationic ruthenium thioketene complexes through intramolecular 1,2-elimination Z. Naturforsch. 52B 117CrossRefGoogle Scholar
  14. 14.
    Neo Y C, Vittal J J and Hor A 2001 Palladium(II) phosphine thiocarboxylates. Structures of cis-Pd(κS-SOCMe)2(dppf) [dppf=1,1′-bis(diphenylphosphino)ferrocene] and trans-Pd(κS-SOCMe)2(PPh3)2 J. Organomet. Chem. 637-639 757CrossRefGoogle Scholar
  15. 15.
    El-Hinnawi M A, Ajlouni A, Abu-Nasser J, Powell K and Vahrenkamp H 1989 Synthesis and characterization of cyclopentadienyldicarbonyliron S-bonded monothiocarboxylates, FeCp(CO)2SCOR. Crystal structure of FeCp(CO)2SCO(2-NO2C6H4 J. Organomet. Chem. 359 79CrossRefGoogle Scholar
  16. 16.
    Joshi D K and Bhattacharya S 2014 Synthesis and structural characterization of a few thiocarboxylatonickel(II) complexes Inorg. Chim. Acta 411 119CrossRefGoogle Scholar
  17. 17.
    Vitaliano R, Fratoddi I, Venditti I, Roviello G, Battocchio C, Polzonetti G and Russo M V 2009 Self-assembled monolayers based on Pd-containing organometallic thiols: preparation and structural characterization J. Phys. Chem. A 113 14730CrossRefGoogle Scholar
  18. 18.
    Goodfellow J A, Anthony S T and Cornock M C 1978 Metal complexes of sulphur ligands. Part 17. Reaction of palladium(II) and platinum(II) monothiobenzoates with various Lewis bases and further studies on complexes containing related ligands J. Chem. Soc., Dalton Trans. 9 1195CrossRefGoogle Scholar
  19. 19.
    Joshi D K, Mishra K B, Tiwari V K and Bhattacharya S 2014 Synthesis, structure, and catalytic activities of new Cu(I) thiocarboxylate complexes RSC Adv. 4 39790CrossRefGoogle Scholar
  20. 20.
    Jibril I, El-Hinnawi M A and El-khateeb M 1991 Synthesis of a new series of iron complexes Fe(C5H5)(CO)(EPh3)SCOR, Fe(But-C5H4)(CO)(EPh3)SCOR and Fe(1,3-But-C5H3)(CO)(PPh3)SCOR (E = P, As, Sb) through photolytic CO-substitution. Study of the effect of R, E and Cp-substituents on the CO-substitution reactions Polyhedron 10 2095CrossRefGoogle Scholar
  21. 21.
    Tawarah K, Jibril I and Bani-Fwaz M Z 2000 Kinetics and mechanism of the photolytic CO-substitution reactions of some cyclopentadienyl dicarbonyl iron thiocarboxylate complexes. Cp′Fe(CO)2SCOR (Cp′ = C5H5, But-C5H4, 1,3-Bu2t-C5H3; R = alkyl, aryl) Trans. Met. Chem. 26 317Google Scholar
  22. 22.
    Jibril I, El-khateeb M, Barakat H, Rheinwald G and Lang H 2003 Photolytic CO-substitution reaction of organoiron thiocarboxylate derivatives CpFe(CO)2SCOR (R = alkyl, aryl) with diphosphines (Ph2P(CH2)nPPh2 (n = 1-6). X-ray crystal structure of [CpFe(dppm)SCO-3,5-(NO2)2C6H3] Inorg. Chim. Acta 333 1CrossRefGoogle Scholar
  23. 23.
    El-khateeb M, Jibril I, Barakat H, Rheinwald G and Lang H 2003 Controlled synthesis of mono substituted diphosphine iron thiocarboxylate complexes CpFe(CO)(Ph2P(CH2)nPPh2)SCOR [n = 1 (dppm), 2 (dppe)]. X-ray crystal structure of CpFe(CO)(dppm-S)SCO(3,5-(NO2)2C6H3 Polyhedron 22 3445CrossRefGoogle Scholar
  24. 24.
    El-Hinnawi M, Aruffo A A, Santersiero S, McAlister D and Schomaker V 1982 Organometallic sulfur complexes. 1. Syntheses, structures, and characterizations of organoiron sulfane complexes (µ-Sx)[(η5-C5H5)Fe(CO)2]2 (x = 1-4) Inorg. Chem. 22 1585CrossRefGoogle Scholar
  25. 25.
    COLLECT, Data Collection Software; Nonius B V, Nether-lands, 1998 Google Scholar
  26. 26.
    Otwinowski Z and Minor W 1997 Processing of X-Ray Diffraction Data Collected in Oscillation Mode In Methods in Enzymology, Macromolecular Crystallography, Part A, Vol. 276 C W Carter and R M Sweet (Eds.) (San Diego, USA: Academic Press) pp. 307–326CrossRefGoogle Scholar
  27. 27.
    Krause L, Herbst-Irmer R, Sheldrick G M and Stalke D 2015 Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination J. Appl. Cryst. 48 3CrossRefGoogle Scholar
  28. 28.
    Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst. C71 3Google Scholar
  29. 29.
    El-khateeb, Asali K J and Lataifeh A 2003 Half sandwich iron S-bonded thiocarbonate complexes: structure of CpFe(CO)2SCO2Et Polyhedron 22 3105CrossRefGoogle Scholar
  30. 30.
    El-khateeb M, Asali K J and Lataifeh A 2006 Iron dithiocarbonate complexes: structure of CpFe(CO)2SC(S)O-4-C6H4Cl Polyhedron 25 1695CrossRefGoogle Scholar
  31. 31.
    El-khateeb M and Roller A 2007 Synthesis and structures of CpFe(CO)21E-ECS2Ph) and CpFe(CO)(κ2E,S-ECS2Ph) where E = S, Se Polyhedron 26 3920CrossRefGoogle Scholar
  32. 32.
    El-khateeb M, Görls H and Weigand W 2007 O-Alkylthio- and O-alkylselenooxalate iron complexes: structures of CpFe(CO)2ECOCO2Me and [CpFe(CO)2ECO]2 Inorg. Chim. Acta 360 705CrossRefGoogle Scholar
  33. 33.
    El-khateeb M, Shaver A and Lebuis A-M 2001 The synthesis and structure of the thiosulfonato iron complexes CpFe(CO)2SS(O)2R J. Organomet. Chem. 622 293CrossRefGoogle Scholar
  34. 34.
    Belmont J and Wrighton W 1986 Photochemical conversion of (η5-C5H5)Fe(CO)21-C5H5) and related complexes to ferrocene and related derivatives: reactivity of the monocarbonyl intermediate Organometallics 5 1421CrossRefGoogle Scholar
  35. 35.
    Stor G J, Hartl F, van Outersterp J W M and Stufkens D J 1995 Spectroelectrochemical (IR, UV/Vis) determination of the reduction pathways for a series of [Re(CO)3(α-diimine)L’]0/+ (L′ = Halide, Otr, THF, MeCN, n-PrCN, PPh3, P(OMe)3) complexes Organometallics 14 1115CrossRefGoogle Scholar
  36. 36.
    El-khateeb M, Abul-Futouh, Görls H and Weigand W 2019 Towards the synthesis of piano-stool iron complexes mediated by S-alkylselenothiocabonato ligands and their substitution reactions Monatsh. Chem. 145 1461CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2020

Authors and Affiliations

  • Mohammad El-Khateeb
    • 1
    Email author
  • Khaleel J Asali
    • 1
  • Batool Al-Juneidi
    • 1
  • Hassan Abul-Futouh
    • 2
  • Helmar Görls
    • 3
  • Wolfgang Weigand
    • 3
  1. 1.Chemistry DepartmentJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of PharmacyAl-Zaytoonah University of JordanAmmanJordan
  3. 3.Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations