Journal of Chemical Sciences

, 131:119 | Cite as

Rhodium-catalyzed synthesis of C4-chalcogenoalkylated oxindoles via Sommelet-Hauser type rearrangement of 3-diazoindolin-2-ones

  • Angula Chandra Shekar Reddy
  • Bhojkumar Nayak
  • Pazhamalai AnbarasanEmail author
Regular Article
Part of the following topical collections:
  1. Special Issue on 150 years of the Periodic Table


Efficient rhodium-catalyzed Sommelet-Hauser type rearrangement of 3-diazoindolin-2-ones with α-thioesters has been accomplished for the synthesis of C4-thioalkylated oxindoles. The developed reaction offers the selective functionalization of C4-position of oxindole via generation of S-ylide and [2, 3]-sigmatropic rearrangement and allows access to diverse C4-thioalkylated oxindoles in good to excellent yield. Furthermore, the method was successfully extended to the synthesis C4-selenoalkylated oxindoles employing the corresponding α-selenoester.

Graphic abstract

Efficient rhodium-catalyzed Sommelet-Hauser type rearrangement of 3-diazoindolin-2-ones with α-thio/α-seleno-esters have been disclosed for the synthesis of C4-thio/selenoalkylated oxindoles.


α-Thioesters α-selenoesters 3-diazoindolin-2-ones S-ylide Se-ylide oxindoles Sommelet-Hauser rearrangement 



We thank DST-SERB (EMR/2016/003677) for the financial support and DST-FIST for ESI-MS facility. ACSR thanks the Council of Scientific & Industrial Research (CSIR) for fellowship.

Supplementary material

12039_2019_1711_MOESM1_ESM.pdf (1.8 mb)
Supplementary material 1 (PDF 1875 kb)


  1. 1.
    (a) Silva B V 2013 Isatin, a versatile molecule: studies in Brazil J. Braz. Chem. Soc. 24 707; (b) Manzoli L, Flacco M E, Boccia S, D’Andrea E, Panic N, Marzuillo C, Siliquini R, Ricciardi W, Villari P and Ioannidis J P A 2016 Generic versus brand-name drugs used in cardiovascular diseases Eur. J. Epidemiol. 31 351Google Scholar
  2. 2.
    Bazoui H, Zahouily M, Boulajaaj S, Sebti S and Zakarya D 2002 QSAR for anti-HIV activity of HEPT derivatives SAR QSAR Environ. Res. 13 567CrossRefGoogle Scholar
  3. 3.
    (a) Tanaka S, Amling M, Neff L, Peyman A, Uhlmann E, Levy J B and Baron R 1996 c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption Nature 383 528; (b) Hoffman R, Dennis I F and Donaldson J 1995 Protein binding modulates inhibition of the epidermal growth factor receptor kinase and DNA synthesis by tyrphostins Cancer Chemother. Pharmacol. 36 316Google Scholar
  4. 4.
    Renslo A R, Jaishankar P, Venkatachalam R, Hackbarth C, Lopez S, Patel D V and Gordeev M F 2005 Conformational Constraint in Oxazolidinone Antibacterials. Synthesis and Structure−Activity Studies of (Azabicyclo[3.1.0]hexylphenyl)oxazolidinones J. Med. Chem. 48 5009CrossRefGoogle Scholar
  5. 5.
    Natarajan A, Guo Y, Harbinski F, Fan Y-H, Chen H, Luus L, Diercks J, Aktas H, Chorev M and Halperin J A 2004 Novel Arylsulfoanilide−Oxindole Hybrid as an Anticancer Agent That Inhibits Translation Initiation J. Med. Chem. 47 4979CrossRefGoogle Scholar
  6. 6.
    (a) Gallagher G, Lavanchy P G, Wilson J W, Hieble J P and DeMarinis R M 1985 4-[2-(Di-n-propylamino)ethyl]-2(3H)-indolone: a prejunctional dopamine receptor agonist J. Med. Chem. 28 1533; (b) Kikuchi C, Hiranuma T and Koyama M 2002 Tetrahydrothienopyridylbutyl-tetrahydrobenzindoles: New Selective Ligands of the 5-HT7 Receptor Bioorg. Med. Chem. Lett. 12 2549; (c) Tokunaga T, Hume W E, Umezome T, Okazaki K, Ueki Y, Kumagai K, Hourai S, Nagamine J, Seki H, Taiji M, Noguchi H and Nagata R 2001 Oxindole Derivatives as Orally Active Potent Growth Hormone Secretagogues J. Med. Chem. 44 4641Google Scholar
  7. 7.
    (a) Dalpozzo R 2017 Catalytic asymmetric synthesis of hetero-substituted oxindoles Org. Chem. Front. 4 2063; (b) Dalpozzo R, Bartoli G and Bencivenni G 2012 Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones Chem. Soc. Rev. 41 7247Google Scholar
  8. 8.
    (a) Yang B H and Buchwald S L 1999 The Development of Efficient Protocols for the Palladium-Catalyzed Cyclization Reactions of Secondary Amides and Carbamates Org. Lett. 1 35; (b) van den Hoogenband A, Lange J H M, Iwema-Bakker W I, den Hartog J A J, van Schaik J, Feenstra R W and Terpstra J W 2006 An efficient one-pot synthesis of novel 4-aryl-1-methyloxindoles Tetrahedron Lett. 47 4361; (c) Poondra R R and Turner N J 2005 Microwave-Assisted Sequential Amide Bond Formation and Intramolecular Amidation:  A Rapid Entry to Functionalized Oxindoles Org. Lett. 7 863; (d) Dounay A B, Hatanaka K, Kodanko J J, Oestreich M, Overman L E, Pfeifer L A and Weiss M M 2003 Catalytic Asymmetric Synthesis of Quaternary Carbons Bearing Two Aryl Substituents. Enantioselective Synthesis of 3-Alkyl-3-Aryl Oxindoles by Catalytic Asymmetric Intramolecular Heck Reactions J. Am. Chem. Soc. 125 6261; (e) Correia V G, Abreu J C, Barata C A E and Andrade L H 2017 Iron-Catalyzed Synthesis of Oxindoles: Application to the Preparation of Pyrroloindolines Org. Lett. 19 1060; (f) Pang Y, Guan M, Zeng R and Zhao Y 2017 A practical approach for the synthesis of oxindole and isatin derivatives by Pd-catalyzed intramolecular amination Org. Chem. Front. 4 2408Google Scholar
  9. 9.
    Abe T, Kosaka Y, Asano M, Harasawa N, Mishina A, Nagasue M, Sugimoto Y, Katakawa K, Sueki S, Anada M and Yamada K 2019 Direct C4-Benzylation of Indoles via Tandem Benzyl Claisen/Cope Rearrangements Org. Lett. 21 826Google Scholar
  10. 10.
    Ye T and McKervey M A 1994 Organic Synthesis with α-Diazo Carbonyl Compounds Chem. Rev. 94 1091CrossRefGoogle Scholar
  11. 11.
    Davies H M L and Beckwith R E J 2003 Catalytic Enantioselective C−H Activation by Means of Metal−Carbenoid-Induced C−H Insertion Chem. Rev. 103 2861Google Scholar
  12. 12.
    (a) Gillingham D and Fei N 2013 Catalytic X–H insertion reactions based on carbenoids Chem. Soc. Rev. 42 4918; (b) Guttenberger N and Breinbauer R 2017 C-H and C-C bond insertion reactions of diazo compounds into aldehydes Tetrahedron 73 6815Google Scholar
  13. 13.
    Ford A, Miel H, Ring A, Slattery C N, Maguire A R and McKervey M A 2015 Modern Organic Synthesis with α-Diazocarbonyl Compounds Chem. Rev. 115 9981CrossRefGoogle Scholar
  14. 14.
    (a) Aggarwal V K and Winn C L 2004 Catalytic, Asymmetric Sulfur Ylide-Mediated Epoxidation of Carbonyl Compounds:  Scope, Selectivity, and Applications in Synthesis Acc. Chem. Res. 37 611; (b) Neuhaus J D, Oost R, Merad J and Maulide N 2018 Sulfur-Based Ylides in Transition-Metal-Catalysed Processes Top. Curr. Chem. 376 15Google Scholar
  15. 15.
    (a) Tayama E 2016 Ring-Substitution, Enlargement, and Contraction by Base-Induced Rearrangements of N-Heterocyclic Ammonium Salts Heterocycles 92 793; (b) Tayama E 2015 Recent Advances in the Base-Induced Sommelet–Hauser Rearrangement of Amino Acid Derived Ammonium Ylides Chem. Rec. 15 789; (c) Roy T, Gaykar R N, Bhattacharjee S and Biju A T 2019 The aryne Sommelet–Hauser rearrangement Chem. Commun. 55 3004Google Scholar
  16. 16.
    (a) Vedejs E and West F G 1986 Ylides by the desilylation of α-silyl onium salts Chem. Rev. 86 941; (b) Dormann K L and Brückner R 2007 Variable Synthesis of the Optically Active Thiotetronic Acid Antibiotics Thiolactomycin, Thiotetromycin, and 834-B1 Angew. Chem., Int. Ed. 46 1160Google Scholar
  17. 17.
    Liao M, Peng L and Wang J 2008 Rh(II)-Catalyzed Sommelet−Hauser Rearrangement Org. Lett. 10 693CrossRefGoogle Scholar
  18. 18.
    (a) Reddy A C S, Choutipalli V S K, Ghorai J, Subramanian V and Anbarasan P 2017 Stereoselective Palladium-Catalyzed Synthesis of Indolines via Intramolecular Trapping of N-Ylides with Alkenes ACS Catal. 7 6283; (b) Yadagiri D and Anbarasan P 2015 Tandem 1, 2-sulfur migration and (aza)-Diels–Alder reaction of β-thio-α-diazoimines: rhodium catalyzed synthesis of (fused)-polyhydropyridines, and cyclohexenes Chem. Sci. 6 5847; (c) Yadagiri D, Reddy A C S and Anbarasan P 2016 Rhodium catalyzed diastereoselective synthesis of 2,2,3,3-tetrasubstituted indolines from N-sulfonyl-1,2,3-triazoles and ortho-vinylanilines Chem. Sci. 7 5934; (d) Yadagiri D and Anbarasan P 2013 Rhodium-catalyzed denitrogenative [2,3] sigmatropic rearrangement: an efficient entry to sulfur-containing quaternary centers Chem. –Eur. J. 19 15115Google Scholar
  19. 19.
    Muthusamy S, Gunanathan C, Babu S A, Suresh E and Dastidar P 2002 First example of regiospecific intermolecular C–H insertion reactions of cyclic rhodium carbenoids: novel synthesis of 3-indol-3′-yloxindoles Chem. Commun. 824Google Scholar
  20. 20.
    Venkat Ragavan R, Vijayakumar V and Suchetha Kumari N 2009 Synthesis of some novel bioactive 4-oxy/thio substituted-1H-pyrazol-5(4H)-ones via efficient cross-Claisen condensation Eur. J. Med. Chem. 44 3852CrossRefGoogle Scholar
  21. 21.
    Bhalla A, Sharma S, Bhasin K K and Bari S S 2007 Convenient Preparation of Benzylseleno‐ and Phenylselenoalkanoic Acids: Reagents for Synthesis of Organoselenium Compounds Synth. Commun. 37 783Google Scholar
  22. 22.
    CCDC 1944163Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations