Advertisement

Journal of Chemical Sciences

, 131:116 | Cite as

Influence of periodic table in designing solid-state metal chalcogenides for thermoelectric energy conversion

  • Ekashmi Rathore
  • Moinak Dutta
  • Kanishka BiswasEmail author
Perspective Article
  • 13 Downloads
Part of the following topical collections:
  1. Special Issue on 150 years of the Periodic Table

Abstract

With the apparent burgeoning energy crisis, alternative sources of energies are in a greater need for a sustainable future. Thermoelectrics which can convert waste heat arising from industries, power plants and automobiles into a usable form, electricity; have the potential to be a game-changer in this critical energy shortage. The efficiency of thermoelectric materials which is given by the figure of merit is tricky to manipulate due to the complicated interrelationships of its parameters. But with proper understanding of a material and with the aid of periodic table, one can manoeuvre the shortcomings which hinder its efficiency. In this perspective, we discuss how the properties of materials can be manipulated just by understanding the elements of the periodic table and how each element in their respective position in the periodic table influences the outcome of high performing thermoelectric material.

Graphical abstract

Thermoelectrics being an alternative clean energy solution is important in mitigating the looming energy crisis by converting waste heat into electricity. Here, we show how the periodicity of elements influences the physical properties that govern the efficiency of thermoelectric materials and help us to achieve high-performance thermoelectrics.

Keywords

Periodic trends Metal chalcogenides Thermoelectrics Chemical bonding Solid state chemistry 

Notes

Acknowledgements

M.D. thanks the University Grants Commission (UGC) for funding. We thank SERB and DST for supporting the thermoelectric program in our group.

References

  1. 1.
    Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G and Snyder G J 2016 Thinking like a chemist: Intuition in thermoelectric materials Angew. Chem. Int. Ed. 55 6826CrossRefGoogle Scholar
  2. 2.
    Zhao L-D, Dravid V P and Kanatzidis M G 2014 The panoscopic approach to high performance thermoelectrics Energy Environ. Sci. 7 251Google Scholar
  3. 3.
    Biswas K, He J, Blum I D, Wu C-I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 High-performance bulk thermoelectrics with all-scale hierarchical architectures Nature 489 414CrossRefGoogle Scholar
  4. 4.
    J R, Chung D Y and Kanatzidis M G 2009 New and old concepts in thermoelectric materials Angew. Chem. Int. Ed. 48 8616CrossRefGoogle Scholar
  5. 5.
    Tan G, Zhao L-D and Kanatzidis M G 2016 Rationally designing high-performance bulk thermoelectric materials Chem. Rev. 116 12123Google Scholar
  6. 6.
    Gibbs Z M, Kim H, Wang H, White R L, Drymiotis F, Kaviany M and Snyder G J 2013 Temperature dependent band gap in PbX (X = S, Se, Te) Appl. Phys. Lett. 103 262109Google Scholar
  7. 7.
    Harrison W A 1989 Tight-binding theory of molecules and solids Pure Appl. Chem. 61 2161Google Scholar
  8. 8.
    Rohrer G S 2001 Structure and bonding in crystalline materials (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
  9. 9.
    Koopmans T 1934 Ãœber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms Physica 1 104CrossRefGoogle Scholar
  10. 10.
    Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals Nature 508 373CrossRefGoogle Scholar
  11. 11.
    Samanta M and Biswas K 2017 Low Thermal conductivity and high thermoelectric performance in (GeTe)1–2x(GeSe)x(GeS)x: competition between solid solution and phase separation J. Am. Chem. Soc. 139 9382CrossRefGoogle Scholar
  12. 12.
    Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G and Zhao X 2017 Compromise and synergy in high-efficiency thermoelectric materials Adv. Mater. 29 1605884Google Scholar
  13. 13.
    Pei Y-L and Liu Y 2012 Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS J. Alloys Compd. 514 40CrossRefGoogle Scholar
  14. 14.
    Guin S N, Srihari V and Biswas K 2015 Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping J. Mater. Chem. A 3 648CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Cao F, Lukas K, Liu W, Esfarjani K, Opeil C, Broido D, Parker D, Singh D J, Chen G and Ren Z 2012 Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium J. Am. Chem. Soc. 134 17731CrossRefGoogle Scholar
  16. 16.
    Ding G, Li J and Gao G 2015 Band structure engineering of multiple band degeneracy for enhanced thermoelectric power factors in MTe and MSe (M = Pb, Sn, Ge) RSC Adv. 5 91974CrossRefGoogle Scholar
  17. 17.
    Albers W, Haas C, Vink H J and Wasscher J D 1961 Investigations on SnS J. Appl. Phys. 32 2220CrossRefGoogle Scholar
  18. 18.
    Zhou Y and Zhao L-D 2017 Promising Thermoelectric Bulk Materials with 2D Structures Adv. Mater. 29 1702676Google Scholar
  19. 19.
    Banik A, Roychowdhury S and Biswas K 2018 The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials Chem. Commun. 54 6573Google Scholar
  20. 20.
    Han Y-M, Zhao J, Zhou M, Jiang X-X, Leng H-Q and Li L-F 2015 Thermoelectric performance of SnS and SnS-SnSe solid solution J. Mater. Chem. A 3 4555CrossRefGoogle Scholar
  21. 21.
    Chandra S and Biswas K 2019 Realization of high thermoelectric figure of merit in solution synthesized 2D SnSe nanoplates via Ge Alloying J. Am. Chem. Soc. 141 6141CrossRefGoogle Scholar
  22. 22.
    Chang C, Wu M, He D, Pei Y, Wu C-F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J-F, He J and Zhao L-D 2018 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals Science 360 778Google Scholar
  23. 23.
    Lee Y K, Luo Z, Cho S P, Kanatzidis M G and Chung I 2019 Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance Joule 3 719Google Scholar
  24. 24.
    Dutta M, Pal K, Waghmare U V and Biswas K 2019 Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe3 Chem. Sci. 10 4905Google Scholar
  25. 25.
    Jana M K, Pal K, Warankar A, Mandal P, Waghmare U V and Biswas K 2017 Intrinsic rattler-induced low thermal conductivity in zintl type TlInTe2 J. Am. Chem. Soc. 139 4350CrossRefGoogle Scholar
  26. 26.
    Samanta M, Pal K, Pal P, Waghmare U V and Biswas K 2018 localized vibrations of Bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe J. Am. Chem. Soc. 140 5866CrossRefGoogle Scholar
  27. 27.
    Morelli D T, Jovovic V and Heremans J P 2008 Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors Phys. Rev. Lett. 101 035901CrossRefGoogle Scholar
  28. 28.
    Guin S N, Chatterjee A, Negi D S, Datta R and Biswas K 2013 High thermoelectric performance in tellurium free p-type AgSbSe2 Energy Environ. Sci. 6 2603Google Scholar
  29. 29.
    Roychowdhury S, Samanta M, Perumal S and Biswas K 2018 Germanium chalcogenide thermoelectrics: electronic structure modulation and low lattice thermal conductivity Chem. Mater. 30 5799Google Scholar
  30. 30.
    Waghmare U V, Spaldin N A, Kandpal H C and Seshadri R 2003 First-principles indicators of metallicity and cation off-centricity in the IV-VI rocksalt chalcogenides of divalent Ge, Sn, and Pb Phys. Rev. B 67 125111CrossRefGoogle Scholar
  31. 31.
    Walsh A, Payne D J, Egdell R G and Watson G W 2011 Stereochemistry of post-transition metal oxides: revision of the classical lone pair model Chem. Soc. Rev. 40 4455CrossRefGoogle Scholar
  32. 32.
    Knox K R, Bozin E S, Malliakas C D, Kanatzidis M G and Billinge S J L 2014 Local off-centering symmetry breaking in the high-temperature regime of SnTe Phys. Rev. B 89 014102CrossRefGoogle Scholar
  33. 33.
    Božin E S, Malliakas C D, Souvatzis P, Proffen T, Spaldin N A, Kanatzidis M G and Billinge S J L 2010 Entropically stabilized local dipole formation in lead chalcogenides Science 330 1660CrossRefGoogle Scholar
  34. 34.
    Biswas K, He J, Zhang Q, Wang G, Uher C, Dravid V P and Kanatzidis M G 2011 Strained endotaxial nanostructures with high thermoelectric figure of merit Nat. Chem. 3 160Google Scholar
  35. 35.
    Androulakis J, Lin C-H, Kong H-J, Uher C, Wu C-I, Hogan T, Cook B A, Caillat T, Paraskevopoulos K M and Kanatzidis M G 2007 Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb1-xSnxTe-PbS J. Am. Chem. Soc. 129 9780CrossRefGoogle Scholar
  36. 36.
    Zhang J, Wu D, He D, Feng D, Yin M, Qin X and He J 2017 Extraordinary thermoelectric performance realized in n-Type PbTe through multiphase nanostructure engineering Adv. Mater. 29 1703148Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.New Chemistry UnitJawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)BangaloreIndia
  2. 2.School of Advanced Materials and International Centre for Materials ScienceJawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)BangaloreIndia

Personalised recommendations