Advertisement

Journal of Chemical Sciences

, 131:103 | Cite as

Dithiocarbonato nickel, palladium and platinum complexes bearing bis(diphenylphosphino)ferrocene: synthesis and X-ray structure determination

  • MOHAMMAD EL-KHATEEBEmail author
  • QUSAY TANASH
  • HASSAN ABUL-FUTOUH
  • HELMAR GÖRLS
  • WOLFGANG WEIGAND
Regular Article
  • 60 Downloads

Abstract

The dithiocarbonato metal complexes M(κ2S,S-S2CO)(κ2P,P-dppf) {M= Ni, Pd, Pt; dppf= bis(diphenylphosphino)ferrocene} are obtained from the reaction of the metal(II) complexes [M(κ2S,S-S2COEt)2] with the dppf ligand or from the chloride substitution of M(κ2P,P-dppf)Cl2 by the O-ethyldithiocabonato anion. These complexes are produced by C-O bond cleavage by the O-ethyldithiocarbonato anion present in solution. These new complexes have been characterized by UV-Vis, NMR, IR spectroscopy and elemental analysis. The structures of the three complexes were further confirmed by single-crystal X-ray diffraction analysis.

Graphical Abstract

The dithiocarbonato metal complexes M(κ2S,S-S2CO)(κ2P,P-dppf) {M= Ni, Pd, Pt, dppf= bis(diphenylphosphino)ferrocene} are obtained from the reaction of the metal(II) complexes [M(κ2S,S-S2COEt)2] with the dppf ligand or from the chloride substitution of M(κ2P,P-dppf)Cl2 by the O-ethyldithiocabonato anion. These new complexes have been characterized by UV-Vis, NMR, IR spectroscopy and elemental analysis. The structures of complexes 13 were further confirmed by single-crystal X-ray diffraction analysis.

Keywords

Dithiocarbonate structure synthesis characterization 

Notes

Acknowledgements

The financial support from the deanship of scientific research, Jordan University of Science and Technology, Grant Number (468/2018) is greatly acknowledged.

References

  1. 1.
    Tekink E R and Haiduc I 2005 Stereochemical aspects of metal xanthate complexes: molecular structure and supermolecular assembly Prog. Inorg. Chem. 54 127Google Scholar
  2. 2.
    Reddy P C and Rangamannar B 1996 Comparative substoichiometric extraction and quantification of mercury in geological water samples with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates J. Radioanal. Nucl. Chem. 213 9CrossRefGoogle Scholar
  3. 3.
    Reddy P C and Rangamannar B 1996 Comparative substoichiometric extraction of silver with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates J. Radioanal. Nucl. Chem. 214 159CrossRefGoogle Scholar
  4. 4.
    Wolf N and Roundhill D M 1994 Long chain alkyl and choline substituted xanthates as extractants for cadmium(II) Polyhedron 13 2801CrossRefGoogle Scholar
  5. 5.
    Sasidharan K K, Palaty S, Gopalakrishnan K S, George K E and Joseph R 2004 Room temperature prevulcanization of natural rubber latex using xanthates Appl. Poly. Sci. 94 1164Google Scholar
  6. 6.
    Natarajan K A and Prakasan M R 2013 Biodegradation of sodium isopropyl xanthate by Paenibacillus polymyxa and Pseudomonas putida Mineral Metallurg. Proc. 30 226Google Scholar
  7. 7.
    Zelmon D E, Gebeyhu Z, Tomlin D C and Thomas M 1998 Investigation of transition metal-xanthate complexes for nonlinear optical applications Mater. Res. Soc. Symp. Proc. 519 395CrossRefGoogle Scholar
  8. 8.
    Singh A, Trivedi M, Singh P, Kociok-Köhn G, Azad U P, Singh A K and Kumar A 2018 Copper(I) tertiary phosphine xanthate complexes as single source precursors for copper sulfide and their application in the OER New J. Chem. 42 18759CrossRefGoogle Scholar
  9. 9.
    Al-Shakban B, Matthews P D, Deogratias G, McNaughter P D, Raftery J, Vitorica-Yrezabal I, Mubofu E B and O’Brien B 2017 Novel Xanthate complexes for the size-controlled synthesis of copper sulfide nanorods Inorg. Chem. 56 9247Google Scholar
  10. 10.
    Schick H D, Danhauser-Riedl S, Amtmann E, Busch R, Reichert A, Steinhauser G, Rastetter J, Sauer G and Berdel R 1989 Antitumoral activity of a xanthate compound II. Therapeutic studies in murine leukemia and tumor models in vivo Cancer Lett. 46 149PubMedGoogle Scholar
  11. 11.
    Friebolin W, Schiling G and Zoeller M 2005 Antitumoral activity of non-platinum xanthate complexes J. Med. Chem. 48 7925CrossRefGoogle Scholar
  12. 12.
    Friebolin W, Schiling G and Zoeller M 2004 Synthesis and structure-activity relationship of novel antitumoral platinum xanthate complexes J. Med. Chem. 47 2256CrossRefGoogle Scholar
  13. 13.
    Amtmann E, Zoeller G, Wesch H and Schilling G 2001 Antitumoral activity of a sulfur-containing platinum complex with an acidic pH optimum Cancer Chemother. Pharmacol. 47 461Google Scholar
  14. 14.
    Xiong R G, Liu C M, Li H Z, You X Z and Huang X Y 1996 Bis[O-(4-methylcyclo-hexyl) di-thiocarbonato-S,S’]nickel(II) Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 52 519CrossRefGoogle Scholar
  15. 15.
    Cox M J and Tickink E 1999 The crystal and molecular structures of some nickel(II)bis(O-alkyl-dithiocarbonate)s and nickel(II)bis(N,N-dialkyldithiocarbamate)s: An evaluation of the coordination potential of 1,1-dithiolate ligands in their nickel(II) complexes Z. Krystallog. 214 242Google Scholar
  16. 16.
    Rajnák C, Moncol J, Boča R, Titiš J and Varga F 2018 Diamagnetic cobalt(III)tris(O-ethylxanthate) and nickel(II)bis(O-ethylxanthate) Nov. Biotechnol. Chim. 16 138Google Scholar
  17. 17.
    Tan Y S, Abdul Halim S M, Molloy K C, Sudlow A, Otero-de-la-Roza A and Tickink E 2016 Persistence of C–H…π (chelate ring) interactions in the crystal structures of palladium bis(O-alkyldithiocarbonate)s, Pd(S2COR)2. The utility of Pd(S2COR)2 as precursors for palladium sulfide materials CrystEngComm 18 1105CrossRefGoogle Scholar
  18. 18.
    Kumar G, Kumar R, Ogric-Ildiz C and Fausto R 2019 Structure, spectroscopic and catalytic activity for peroxide ring-opening of nickel methylxanthate J. Mol. Struct. 1777 33CrossRefGoogle Scholar
  19. 19.
    Juncal L C, Avila J, Asensio M C, Vedova C O D and Ramo R M 2017 Electronic structure determination using an assembly of conventional and synchrotron techniques: the case of a xanthate complex J. Chim. Acta A: Mol. Biomol. Spec. 180 183CrossRefGoogle Scholar
  20. 20.
    Tiekink E and Winter G 1986 The crystal-structure of bis(O-ethylxanthato)-triphenylphosphinenickel(II)-Ni(S2COC2H5)2P(C6H5)3 Aus. J. Chem. 39 813Google Scholar
  21. 21.
    Manohar A, Karpagavel K and Arumugam M 2014 Chelated and free phosphine adducts of nickel(II)dithiocarbamates: synthesis, spectroscopy and valence bond parameter calculations Int. J. ChemTech. Res. 6 474Google Scholar
  22. 22.
    Perpiñán M F, Ballester L, González-Casso M E and Santos A 1987 Reactions between bis(O-alkyldithiocarbonato)nickel(ll) complexes and phosphines. Formation of a dithiocarbonate complex of nickel(l1): [Ni(S2CO)(Ph2PCH2CH2PPh2)] J. Chem. Soc., Dalton Trans. 281Google Scholar
  23. 23.
    Haiduc I, Semeniuc R F, Campian M, Kravtsov V C, Simonov Y A and Lipkowski J 2003 The reaction of nickel(II) xanthates with tetraphenyldiphosphinoethane (dppe) revisited. Formation and crystal structures of Ni3S2(S2COR)2(dppe) (R=Me, Et; dppe= Ph2PCH2CH2PPh2) at room temperature and of Ni(S2CO)(dppe) at 150 K Polyhedron 22 2895CrossRefGoogle Scholar
  24. 24.
    Trávníček Z, Pastorek R, Šindelář Z, Klička R and Marek J 1996 Investigation of {1,2-bis(diphenylphosphino)ethane-P,P’}-(dithio-carbonato-S,S’)-nickel(II) Trans. Met. Chem. 21 81CrossRefGoogle Scholar
  25. 25.
    Tenorio M J, Puerta M C and Valerga P 1996 Nickel complexes of 1,2-bis(diisopropylphosphino)ethane with sulfur-containing ligands J. Chem. Soc., Dalton Trans. 1935Google Scholar
  26. 26.
    Colton R and Tedesco V 1991 Multinuclear (31P, 77Se, 195Pt) magnetic resonance studies on the interaction of platinum bis(n-propylxanthate) with potentially bidentate ligands Inorg. Chim. Acta 183 161Google Scholar
  27. 27.
    Fackler J P Jr. and Seidel W C 1969 Sulfur ligand complexes. IX Reactions of metal xanthates and their derivatives. The formation of bisphosphine-bithiocarbonate and -trithiocarbonate complexes of palladium(II) and platinum(II) Inorg. Chem. 8 1631CrossRefGoogle Scholar
  28. 28.
    Casollat U, Ajo D, Valle G, Corain B, Longato B and Graziani R 1988 Heteropolymetallic complexes of 1,1′-bis(diphenylphosphino)ferrocene (dppf). II. Crystal structure of dppf and NiCl2(dppf) J. Chem. Cryst. 18 583Google Scholar
  29. 29.
    Hayashi T, Konishi M, Kobori Y, Kumada M, Higuchi T and Hirotsu K 1984 Dichloro [1,l’-bis(diphenylphosphino)ferrocene]palladium(II): an effective catalyst for cross-coupling of secondary and primary alkyl Grignard and alkylzinc reagents with organic halides J. Am. Chem. Soc. 106 158CrossRefGoogle Scholar
  30. 30.
    Colacot T J, Teichman, R A, Cea-Olivares R, Alvarado-Rodrigues J G, Toscano R A and Boyko W 1998 Synthesis, single crystal X-ray structure determination and NMR studies of Cp2Fe(PPh2)2PtPh2 and Cp2Fe(PPh2)2PtI2 J. Organomet. Chem. 557 169CrossRefGoogle Scholar
  31. 31.
    Nonius BV COLLECT, Data Collection Software; Netherlands, 1998Google Scholar
  32. 32.
    Otwinowski Z and Minor W 1997 Processing of X-ray diffraction data collected in oscillation mode In Macromolecular Crystallography Part A C W and R M Sweet (Eds.) Methods Enzymol. 276 307Google Scholar
  33. 33.
    SADABS 2.10, Bruker-AXS inc, 2002, Madison, WI, USAGoogle Scholar
  34. 34.
    Sheldrick G M 2008 Acta Cryst. A64 112CrossRefGoogle Scholar
  35. 35.
    XP, Siemens Analytical X-ray Instruments Inc, 1990, Karlsruhe, Germany; 1994; Madison, WI, USA.Google Scholar
  36. 36.
    Al-Jibori S A, Khaleel T F, Ahmed S A O, Al-Hayaly L G, Merzweier K, Wagner C and Hogarth G 2012 Heteroleptic palladium(II) and platinum(II) complexes of 1,1-bis(diphenylphosphino)ferrocene (dppf) and heterocyclic thionates: crystal structures of [Pt(Phoz)22-dppf)] (PhazH= 5-phenyl-1,3,4-oxadiazole-2-thione) and [Pd(bzoxt)22-dppf) (bzoxt= benz-1,1-oxazoline-2-thione) Polyhedron 4 20CrossRefGoogle Scholar
  37. 37.
    Aucott S M, Milton H M, Robertson S D, Slawin A M Z, Walker G D and Woollins J D 2004 Platinum complexes of naphthalene-1,8-dichalcogen and related polyaromatic hydrocarbon ligand Chem. Eur. J. 10 166CrossRefGoogle Scholar
  38. 38.
    Nataro C and Fosbenner S M 2009 Synthesis and characterization of transition-metal complexes containing 1,1´-bis(diphenylphosphino)ferrocene J. Chem. Ed. 86 1412CrossRefGoogle Scholar
  39. 39.
    Noh D-Y, Seo E-M, Lee H-J, Jang M G, Choi M G, Kim Y H and Hong J 2001 Syntheses and characterization of heterobimetallic complexes (dppf)Pt(dithiolate) (dppf: bis(diphenylphosphino)ferrocene); X-ray crystal structures of (dppf)PtL where L=dmit, phdt and i-mnt Polyhedron 20 1939CrossRefGoogle Scholar
  40. 40.
    Lin I J B, Chen H W and Fickler J P Jr. 1978 Sulfur Chelates. 32. Studies of the solid-state molecular structure and solution structures and dynamics of bis(phosphine) adducts of platinum(1I) 1,l-dithiolates. Molecular structures of Pt[S2CN(i-Bu)2]2(PMe2Ph)2, Pt(S2CO)(PPh3)2, and Pt(S2CO)(diphos)1/4CHCl3 Inorg. Chem. 17 394CrossRefGoogle Scholar
  41. 41.
    Jones P G and Sheldrick G M 1983 Dithiocarbonate and trithiocarbonate complexes of palladium(II); crystal structure of Pd(Ph3P)2(CS2O).CH2C12 Z. Naturforsch. 38B 449CrossRefGoogle Scholar
  42. 42.
    Keter F K, Guzei I L and Darkwa G 2013 N-heterocyclic dithiocarbamate platinum(II) complexes: Unexpected transformation of dithiocarbamate to oxodithiocarbonate in phosphinoplatinum complexes in solution Inorg. Chem. Comm. 27 60Google Scholar
  43. 43.
    Zagal J and Costamagna J A 1977 Complexes of tri-n-butylphosphine and xanthates nickel(II) Inorg. Nucl. Chem. Lett. 13 411CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • MOHAMMAD EL-KHATEEB
    • 1
    Email author
  • QUSAY TANASH
    • 1
  • HASSAN ABUL-FUTOUH
    • 2
  • HELMAR GÖRLS
    • 3
  • WOLFGANG WEIGAND
    • 3
  1. 1.Chemistry DepartmentJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of PharmacyAl-Zaytoonah University of JordanAmmanJordan
  3. 3.Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations