Journal of Chemical Sciences

, 131:101 | Cite as

Cobalt nitride nanoflakes supported on Ni foam as a high-performance bifunctional catalyst for hydrogen production via urea electrolysis

  • Yanmin Chen
  • Peijian SunEmail author
  • Weiwei Xing
Regular Article


Substituting low theoretical potential of the urea oxidation reaction (UOR) for the high theoretical potential of water splitting at the anode (oxygen evolution reaction) is meaningful for hydrogen energy storage and conversion. In this work, a bifunctional catalyst, cobalt nitride nanoflakes supported on Ni foam (CoN NF/NF), was synthesized for both UOR and hydrogen evolution reaction (HER). A two-electrode electrolyzer (CoN NF/NF||CoN NF/NF) was constructed. To drive 100 mA/cm2, the voltage of CoN NF/NF||CoN NF/NF only 1.698 V is required, which is much lower than that of Pt/C||IrO2 (1.860 V) and the current density can be maintained for 30 h.

Graphic abstract

A non-noble metal bifunctional catalyst, cobalt nitride nanoflakes supported on Ni foam (CoN NF/NF) was used as both anode and cathode materials for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), showing excellent catalytic activity and stability for urea electrolysis assisted hydrogen production.


UOR bifunctional catalyst HER 



This work was funded by the Environmental Catalysis Innovative Research Team of Zhengzhou Normal University (No. 702010).

Supplementary material

12039_2019_1678_MOESM1_ESM.pdf (772 kb)
Supplementary material 1 (PDF 772 kb)


  1. 1.
    Anantharaj S, Ede S R, Karthick K, Sam Sankar S, Sangeetha K, Karthik P E and Kundu S 2018 Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment Energ. Environ. Sci. 11 744CrossRefGoogle Scholar
  2. 2.
    Mota F M, Choi C H and Boppella R 2019 Arising synergetic and antagonistic effects in the design of Ni- and Ru-based water splitting electrocatalysts J. Mater. Chem. A 7 639CrossRefGoogle Scholar
  3. 3.
    Ojha K, Banerjee S and Ganguli A K 2017 Facile charge transport in FeNx/Mo2N/CNT nanocomposites for efficient hydrogen evolution reactions J. Chem. Sci. 129 989CrossRefGoogle Scholar
  4. 4.
    Tilak B V, Ramamurthy A C and Conway B E 1986 High performance electrode materials for the hydrogen evolution reaction from alkaline media Chem. Sci. 97 359Google Scholar
  5. 5.
    Manoharan R 1997 Electrochemical hydrogen evolution on solid oxides RuO2, Ru0.7Rh0.3O2, and IrO2, from acidic water Chem. Sci. 109 1Google Scholar
  6. 6.
    Yan X, Tian L, He M and Chen X 2015 Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction Nano. Lett. 15 6015CrossRefGoogle Scholar
  7. 7.
    Xu K, Chen P, Li X, Tong Y, Ding H, Wu X, Chu W, Peng Z, Wu C and Xie Y 2015 Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation J. Am. Chem. Soc. 137 4119CrossRefGoogle Scholar
  8. 8.
    Pulipaka S, Koushik A K S and Deepa M 2019 Enhanced photoelectrochemical activity of Co-doped β-In2S3 nanoflakes as photoanodes for water splitting RSC Adv. 9 1335CrossRefGoogle Scholar
  9. 9.
    Wang J, Cui W, Liu Q, Xing Z, Asiri A M and Sun X 2016 Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting Adv. Mater. 28 215CrossRefGoogle Scholar
  10. 10.
    Xu W, Zhang H, Li G and Wu Z 2014 Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell Sci. Rep. 4 58Google Scholar
  11. 11.
    Hu S, Feng C, Wang S, Liu J, Wu H, Zhang L and Zhang J 2019 Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition ACS Appl. Mater. Inter. 11 13168CrossRefGoogle Scholar
  12. 12.
    Ma M, Qu F, Ji X, Liu D, Hao S, Du G, Asiri A M, Yao Y, Chen L and Sun X 2017 Bimetallic nickel‐substituted cobalt‐borate nanowire array: an earth‐abundant water oxidation electrocatalyst with superior activity and durability at near neutral pH Small 13 1700394CrossRefGoogle Scholar
  13. 13.
    Gwak J, Choun M and Lee J 2016 Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production ChemSusChem 9 403CrossRefGoogle Scholar
  14. 14.
    Chen S, Duan J, Vasileff A and Qiao S Z 2016 Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion Angew Chem. Int. Ed. Engl. 55 3804CrossRefGoogle Scholar
  15. 15.
    Fei J B, Cui Y, Yan X H, Qi W, Yang Y, Wang K W and Li J B 2008 Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment Adv. Mater. 20 452CrossRefGoogle Scholar
  16. 16.
    Barakat N A M, Alajami M, Alhaj Y, Obaid M and Al-Meer S 2017 Enhanced onset potential NiMn-decorated activated carbon as effective and applicable anode in urea fuel cells Catal. Commun. 97 1304Google Scholar
  17. 17.
    Ding R, Qi L, Jia M and Wang H 2014 Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation Nanoscale 6 1369Google Scholar
  18. 18.
    Tyagi M, Tomar M and Gupta V 2013 NiO nanoparticle-based urea biosensor Biosens. Bioelectron. 41 110CrossRefGoogle Scholar
  19. 19.
    Ji R Y, Chan D S, Jow J J and Wu M S 2013 Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis Electrochem. Commun. 29 21Google Scholar
  20. 20.
    Wu M S, Ji R Y and Zheng Y R 2014 Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea Electrochim. Acta 114 194CrossRefGoogle Scholar
  21. 21.
    Yue Z, Yao S, Li Y, Zhu W and Zhang W 2018 Surface engineering of hierarchical Ni(OH)2 nanosheet@nanowire configuration toward superior urea electrolysis Electrochim. Acta 268 211CrossRefGoogle Scholar
  22. 22.
    Wang L, Li M, Huang Z, Li Y, Qi S, Yi C and Yang B 2014 Toward high capacity and stable manganese-spinel electrode materials: A case study of Ti-substituted system J. Power Sources 264 282CrossRefGoogle Scholar
  23. 23.
    Yan X, Tian L and Chen X 2015 Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction J. Power Sources 300 336CrossRefGoogle Scholar
  24. 24.
    Liu Q, Xie L, Qu F, Liu Z and Du G 2017 Porous Ni3N nanosheets array as a high-performance nonnoble-metal catalyst for urea-assisted electrochemical hydrogen production Inorg. Chem. Front. 2017 1120CrossRefGoogle Scholar
  25. 25.
    Chen T, Liu D, Lu W, Wang K, Du G, Asiri A M and Sun X 2016 Three-dimensional Ni\r 2\r P nanoarray: an efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity Anal. Chem. 88 7885CrossRefGoogle Scholar
  26. 26.
    Wu M, Jao C, Chuang and Chen F 2017 Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis Electrochim. Acta 227 210CrossRefGoogle Scholar
  27. 27.
    Wang X, Wang J, Sun X, Wei S, Cui L, Yang W and Liu J 2017 Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis Nano Res. 11 988CrossRefGoogle Scholar
  28. 28.
    Chen S, Duan J, Vasileff A and Qiao S Z 2016 Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion Angew. Chem. Int. Ed. 55 3804CrossRefGoogle Scholar
  29. 29.
    Miller A T, Hassler B L and Botte G G 2012 Rhodium electrodeposition on nickel electrodes used for urea electrolysis J. Appl. Electrochem. 42 925CrossRefGoogle Scholar
  30. 30.
    Li F, Ohnishi R, Yamada Y, Kubota J, Domen K, Yamada A and Zhou H 2013 Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for nonaqueous Li–O2 batteries Chem. Commun. 49 1175CrossRefGoogle Scholar
  31. 31.
    Dong S, Chen X, Zhang K, Gu L, Zhang L, Zhou X, Li L, Liu Z, Han P, Xu H, Yao J, Zhang C, Zhang X, Shang C, Cui G and Chen L 2011 Molybdenum nitride based hybrid cathode for rechargeable lithium–O2 batteries Chem. Commun. 47 11291Google Scholar
  32. 32.
    Kang J S, Kim J Y, Yoon J, Kim J, Yang J, Chung D Y and Sung Y E 2018 Room-temperature vapor deposition of cobalt nitride nanofilms for mesoscopic and perovskite solar cells Adv. Energy Mater. 8 1703114CrossRefGoogle Scholar
  33. 33.
    Gelfi M, Bontempi E, Roberti R, Armelao L and Depero L E 2004 Residual stress analysis of thin films and coatings through XRD2 experiments Thin Solid Films 450 143CrossRefGoogle Scholar
  34. 34.
    Song X, Chardonnet S, Savini G, Zhang S Y, Vorster W J J and Korsunsky A M 2008 Experimental/Modelling Study of Residual Stress in Al/SiCp Bent Bars by Synchrotron XRD and Slitting Eigenstrain Methods. Mater. Sci. Forum 571 277CrossRefGoogle Scholar
  35. 35.
    Tong Y, Chen P, Zhou T, Xu K, Chu W, Wu C and Xie Y 2017 A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: cobalt oxide nanoparticles strongly coupled to B, N-Decorated Graphene Angew. Chem. Int. Ed. 129 7227CrossRefGoogle Scholar
  36. 36.
    Liu T, Li M, Dong P, Zhang Y and Guo L 2018 Design and facile synthesis of mesoporous cobalt nitride nanosheets modified by pyrolytic carbon for the nonenzymatic glucose detection Sens. Actuat. B: Chem. 255 1983CrossRefGoogle Scholar
  37. 37.
    Gao D, Zhang J, Wang T, Xiao W and Tao K 2016 Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution J. Mater. Chem. A 4 17363CrossRefGoogle Scholar
  38. 38.
    Xiao C, Li S, Zhang X and MacFarlane D R 2017 MnO2/MnCo2O4/Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation J. Mater. Chem. A 5 7825CrossRefGoogle Scholar
  39. 39.
    Chen S, Duan J, Ran J, Jaroniec M and Qiao S 2013 N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst Energy Environ. Sci. 6 3693CrossRefGoogle Scholar
  40. 40.
    Lu X and Zhao C 2015 Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities Nat. Commun. 6 6616Google Scholar
  41. 41.
    Liu D, Liu T, Zhang L, Qu F, Du G, Asiri A M and Sun X 2017 High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode J. Mater. Chem. A 5 3208CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringZhengzhou Normal UniversityZhengzhouChina
  2. 2.Zhengzhou Tobacco Research Institute of CNTCZhengzhouChina
  3. 3.Faculty of General EducationZhengzhou Technology and Business UniversityZhengzhouChina

Personalised recommendations