Influence of \(\hbox {TiO}_{2}\) structural properties on photocatalytic hydrogen gas production

  • Hasliza BahrujiEmail author
  • Michael Bowker
  • Philip R Davies
Regular Article


A range of commercially produced \(\hbox {TiO}_{2}\) was deposited with Pd nanoparticles and the activities of the anaerobic, ambient temperature photocatalytic hydrogen production from water-methanol mixture were evaluated. The photocatalytic reactions were carried out in the liquid and gas phase conditions with the rate of hydrogen evolutions were higher was when in the gas phase. The \(\hbox {Pd}/\hbox {TiO}_{2}\) catalysts were characterised using XRD, \(\hbox {N}_{2}\) adsorption, infrared and XPS in order to investigate the influence of structural properties of \(\hbox {TiO}_{2}\) in determining photocatalytic activity. A positive relationship was established in the rate of hydrogen production from the gas and liquid phase conditions with the size of crystallite \(\hbox {TiO}_{2}\). Analysis of the surface properties of \(\hbox {TiO}_{2}\) using XPS shows the presence of surface hydroxyl that also influenced the photocatalytic activity of \(\hbox {TiO}_{2}\).

Graphical Abstract

SYNOPSIS: All of the \(\hbox {TiO}_{2}\) produced hydrogen with the rate of hydrogen production was higher in the gas phase condition. The activities of the catalysts were correlated to the size of the \(\hbox {TiO}_{2}\) crystallite and the presence of surface hydroxyl on the surface, despite being randomly obtained commercially. The photocatalytic activity of \(\hbox {TiO}_{2}\) was associated with the rapid migration of the charge carriers to the surface and the rate of charge recombination.


Photocatalysis; hydrogen production; methanol; alcohol reforming; titania-Pd catalysts 


  1. 1.
    Holladay J D, Hu J, King D L and Wang Y 2009 An overview of hydrogen production technologies Catal. Today 139 244CrossRefGoogle Scholar
  2. 2.
    Posdziech O, Schwarze K and Brabandt J 2018 Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis Int. J. Hydrogen Energy
  3. 3.
    Fujishima A and Honda K 1972 Electrochemical photolysis of water at a semiconductor electrode Nature 238 37CrossRefGoogle Scholar
  4. 4.
    Subramanian E, Baeg J-O, Lee S M, Moon S-J and Kong K-j 2009 Nanospheres and nanorods structured \(\text{ Fe }_{2}\text{ O }_{3}\) and \(\text{ Fe }_{2-{\rm x}}\text{ Ga }_{{\rm x}}\text{ O }_{3}\) photocatalysts for visible-light mediated (\(\lambda >=~420~\text{ nm }\)) \(\text{ H }_{2}\text{ S }\) decomposition and \(\text{ H }_{2}\) generation Int. J. Hydrogen Energy 34 8485CrossRefGoogle Scholar
  5. 5.
    Kato H, Asakura K and Kudo A 2003 Highly efficient water splitting into \(\text{ H }_{2}\) and \(\text{ O }_{2}\) over lanthanum-doped \(\text{ NaTaO }_{3}\) photocatalysts with high crystallinity and surface nanostructure J. Am. Chem. Soc.  125 3082CrossRefGoogle Scholar
  6. 6.
    Bhatt M D and Lee J S 2017 Nanomaterials for photocatalytic hydrogen production: from theoretical perspectives RSC Adv.  7 34875CrossRefGoogle Scholar
  7. 7.
    She X, Wu J, Xu, H, Zhong J, Wang Y, Song Y, Nie K, Liu Y, Yang Y, Rodrigues M-T F, Vajtai R, Lou J, Du D, Li H and Ajayan P M 2017 High Efficiency Photocatalytic Water Splitting Using 2D \(\upalpha \) \(-\) \(\text{ Fe }_{2}\text{ O }_3/\text{ g }{-}\text{ C }_{3}\text{ N }_{4}\) Z-Scheme Catalysts Adv. Energy Mater. 7 1700025CrossRefGoogle Scholar
  8. 8.
    Xie W, Li R and Xu Q 2018 Enhanced photocatalytic activity of Se-doped \(\text{ TiO }_{2}\) under visible light irradiation Sci. Rep. 8 8752CrossRefGoogle Scholar
  9. 9.
    Liu S-H, Tang W-T and Lin W-X 2017 Self-assembled ionic liquid synthesis of nitrogen-doped mesoporous TiO\(_2\) for visible-light-responsive hydrogen production Int. J. Hydrogen Energy 42 24006Google Scholar
  10. 10.
    Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O’Shea K, Entezari M H and Dionysiou D D 2012 A review on the visible light active titanium dioxide photocatalysts for environmental applications Appl. Catal. B Environ. 125 331CrossRefGoogle Scholar
  11. 11.
    Yang Y, Liu G, Irvine J T S and Cheng H-M 2016 Enhanced photocatalytic H2 production in core–shell engineered rutile TiO\(_2\) Adv. Mater. 28 5850CrossRefGoogle Scholar
  12. 12.
    Seadira T W P, Sadanandam G, Ntho T, Masuku C M and Scurrell M S 2018 Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol Appl. Catal. B Environ. 222 133CrossRefGoogle Scholar
  13. 13.
    Kemnade N, Gebhardt P, Haselmann G M, Cherevan A, Wilde G and Eder D 2018 How to evaluate and manipulate charge transfer and photocatalytic response at hybrid nanocarbon–metal oxide interfaces Adv. Funct. Mater. 28 1704730CrossRefGoogle Scholar
  14. 14.
    Higashimoto S, Hikita K, Azuma M, Yamamoto M, Takahashi M, Sakata Y, Matsuoka M and Kobayashi H 2017 Visible light-induced photocatalysis on carbon nitride deposited titanium dioxide: hydrogen production from sacrificial aqueous solutions Chin. J. Chem. 35 165CrossRefGoogle Scholar
  15. 15.
    Bahruji H, Bowker M, Davies P R, Kennedy J and Morgan D J 2015 The importance of metal reducibility for the photo-reforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals Int. J. Hydrogen Energy 40 1465CrossRefGoogle Scholar
  16. 16.
    Bahruji H, Bowker M, Davies P R and Pedrono F 2011 New insights into the mechanism of photocatalytic reforming on Pd/TiO\(_2\) Appl. Catal. B Environ. 107 205Google Scholar
  17. 17.
    Bickley R I, Gonzalez-Carreno T, Lees J S, Palmisano L and Tilley R J D 1991 A structural investigation of titanium dioxide photocatalysts J. Solid State Chem.  92 178CrossRefGoogle Scholar
  18. 18.
    Carneiro J T, Savenije T J, Moulijn J A and Mul G 2011 How phase composition influences optoelectronic and photocatalytic properties of TiO\(_{2}\) J. Phys. Chem. C 115 2211CrossRefGoogle Scholar
  19. 19.
    Munuera G, Rives-Arnau V and Saucedo A 1979 Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO\(_{2}\) surfaces. Part 1.—Role of hydroxyl groups in photo-adsorption J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases 75 736Google Scholar
  20. 20.
    Chen M, Ma C Y, Mahmud T, Darr J A and Wang X Z 2011 Modelling and simulation of continuous hydrothermal flow synthesis process for nano-materials manufacture J. Supercrit. Fluids 59 131CrossRefGoogle Scholar
  21. 21.
    Gruar R I, Tighe C J and Darr J A 2013 Scaling-up a Confined jet reactor for the continuous hydrothermal manufacture of nanomaterials Ind. Eng. Chem. Res. 52 5270CrossRefGoogle Scholar
  22. 22.
    Dijkstra M F J, Panneman H J, Winkelman J G M, Kelly J J and Beenackers A A C M 2002 Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst Chem. Eng. Sci. 57 4895CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Connor P A, Dobson K D and McQuillan A J 1999 Infrared spectroscopy of the TiO2/aqueous solution interface Langmuir 15 2402CrossRefGoogle Scholar
  25. 25.
    Yang, J, Bai H, Tan X and Lian J 2006 IR and XPS investigation of visible-light photocatalysis—nitrogen–carbon-doped TiO\(_{2}\) film Appl. Surf. Sci. 253 1988CrossRefGoogle Scholar
  26. 26.
    Carley A F, Chalker P R, Riviere J C and Roberts M W 1987 The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases 83 370Google Scholar
  27. 27.
    Kumar P M, Badrinarayanan S and Sastry M 2000 Nanocrystalline TiO\(_{2}\) studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states Thin Solid Films 358 122CrossRefGoogle Scholar
  28. 28.
    Yu J, Zhao X and Zhao Q 2000 Effect of surface structure on photocatalytic activity of TiO\(_{2}\) thin films prepared by sol-gel method Thin Solid Films 379 7CrossRefGoogle Scholar
  29. 29.
    Regonini D, Jaroenworaluck A, Stevens R and Bowen C R 2010 Effect of heat treatment on the properties and structure of TiO\(_{2}\) nanotubes: phase composition and chemical composition Surface Interf. Anal. 42 139CrossRefGoogle Scholar
  30. 30.
    Erdem B, Hunsicker R A, Simmons G W, Sudol E D, Dimonie V L and El-Aasser M S 2001 XPS and FTIR surface characterization of TiO\(_{2}\) particles used in polymer encapsulation Langmuir  17 2664CrossRefGoogle Scholar
  31. 31.
    Jensen H, Soloviev A, Li Z and Søgaard E G 2005 XPS and FTIR investigation of the surface properties of different prepared titania nano-powders Appl. Surface Sci.  246 239CrossRefGoogle Scholar
  32. 32.
    Al-Mazroai L S, Bowker M, Davies P, Dickinson A, Greaves J, James D and Millard L 2007 The photocatalytic reforming of methanol Catal. Today 122 46CrossRefGoogle Scholar
  33. 33.
    Bahruji H, Bowker M, Davies P, Morgan D, Morton C A, Egerton T, Kennedy J and Jones W 2014 Rutile TiO\(_{2}\)–Pd photocatalysts for hydrogen gas production from methanol reforming 58 70Google Scholar
  34. 34.
    Wang C-y, Groenzin H and Shultz M J 2004 Direct observation of competitive adsorption between methanol and water on \(\text{ TiO }_{2}\): An in situ Sum-Frequency Generation Study J. Am. Chem. Soc.  126 8094CrossRefGoogle Scholar
  35. 35.
    Shen M and Henderson M A 2012 Role of water in methanol photochemistry on rutile TiO\(_{2}\)(110) J. Phys. Chem. C 116 18788CrossRefGoogle Scholar
  36. 36.
    Ohno T, Sarukawa K, Tokieda K and Matsumura M 2001 Morphology of a TiO\(_{2}\) photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases J. Catal. 203 82CrossRefGoogle Scholar
  37. 37.
    Zhang J, Xu Q, Feng Z, Li M and Li C 2008 Importance of the relationship between surface phases and photocatalytic rutile TiO\(_{2}\)–Pd photocatalysts for hydrogen gas production from methanol reforming of TiO\(_{2}\) Angew. Chem. Int. Ed.  47 1766CrossRefGoogle Scholar
  38. 38.
    Rothenberger G, Moser J, Graetzel M, Serpone N and Sharma D K 1985 Charge carrier trapping and recombination dynamics in small semiconductor particles J. Am. Chem. Soc. 107 8054CrossRefGoogle Scholar
  39. 39.
    Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann D W and Pan J H 2018 Charge carrier trapping, recombination and transfer during TiO\(_{2}\) photocatalysis: An overview Catal. Today Google Scholar
  40. 40.
    Choi W, Termin A and Hoffmann M (1994) The role of metal ion dopants in quantum-sized TiO\(_{2}\): Correlation between photoreactivity and charge carrier recombination dynamics J. Phys. Chem.  98 13669CrossRefGoogle Scholar
  41. 41.
    Linsebigler A L, Lu G and Yates J T 1995 Photocatalysis on TiO\(_2\) surfaces: Principles, mechanisms, and selected results Chem. Rev.  95 735CrossRefGoogle Scholar
  42. 42.
    Aas N, Pringle T J and Bowker M 1994 Adsorption and decomposition of methanol on \(\text{ TiO }_{2}\), \(\text{ SrTiO }_{3}\) and SrO J. Chem. Soc. Faraday Trans.  90 1015CrossRefGoogle Scholar
  43. 43.
    Addamo M, Augugliaro V, Di Paola A, García-López E, Loddo V, Marcì G and Palmisano L 2008 Photocatalytic thin films of TiO\(_{2}\) formed by a sol-gel process using titanium tetraisopropoxide as the precursor Thin Solid Films  516 3802Google Scholar
  44. 44.
    Oosawa Y and Grätzel M 1988 Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO\(_{2}\) suspensions J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases  84 197Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Hasliza Bahruji
    • 1
    Email author
  • Michael Bowker
    • 2
    • 3
  • Philip R Davies
    • 2
  1. 1.Centre of Advanced Material and Energy ScienceUniversity Brunei DarussalamGadongBrunei Darussalam
  2. 2.School of Chemistry, Cardiff Catalysis InstituteCardiff UniversityCardiffUK
  3. 3.UK Catalysis HubResearch Complex at Harwell (RCaH), Rutherford Appleton LaboratoryHarwellUK

Personalised recommendations