Rhodium(III) complex with pyrene-pyridyl-hydrazone: synthesis, structure, ligand redox, spectral characterization and DFT calculation

  • Soumitra Dinda
  • Sarat Chandra Patra
  • Sanjib GangulyEmail author
Regular Article


The pyridylhydrazone ligand incorporating a pendant pyrene moiety HL has been synthesized starting from 2-hydrazinopyridine and its coordinating behaviour towards rhodium(III) have been scrutinized. The complex of type [\(\hbox {Rh}{} \mathbf{L}(\hbox {PPh}_{3})_{2} \hbox {Cl}_{2}\)], incorporating five-membered chelate ring has been isolated and the structure has been authenticated by single-crystal X-ray diffraction study. The ligand exhibits an oxidative response at \(\sim \)1.2 V upon coordination with rhodium(III) and the optoelectronic properties as well as theoretical exploration have been performed by the density functional theory (DFT) as well as time-dependent density functional theory (TD-DFT) analyses.

Graphical Abstract

A new rhodium complex [\(\hbox {RhL} (\hbox {PPh}_{3})_{2} \hbox {Cl}_{2}\)] incorporating monoanionic polycyclic aromatic hydrocarbon (PAH) based hydrazone ligand were synthesized and the optoelectronic properties were explored.


Polycyclic aromatic hydrocarbon (PAH) hydrazone photoluminescence redox activity 



We are thankful to the State Council for Science and Technology, West Bengal (Grant No. 683(Sanc.)/ST/P/S&T/4G-11/2014) for their financial support. We express our deep sense of gratitude to Prof. Kausikisankar Pramanik of Jadavpur University for permitting us to use all the instrumental facilities of his laboratory. Grants from DST-FIST for the instrumental facility in SXC are gratefully acknowledged. We express our sincere thanks to the Department of Science and Technology, New Delhi, India for the data collection on the CCD facility setup (Jadavpur University). S. Dinda acknowledges WBDST for his research fellowship. S. C. Patra thanks UGC, New Delhi (No. F. 4-2/2006(BSR)/CH/15-16/0173) for his fellowship.

Supplementary material

12039_2019_1598_MOESM1_ESM.pdf (971 kb)
Supplementary material 1 (pdf 970 KB)


  1. 1.
    Pramanik S and Aprahamian I 2016 Hydrazone Switch-Based Negative Feedback Loop J. Am. Chem. Soc. 138 15142CrossRefGoogle Scholar
  2. 2.
    Su X and Aprahamian I 2013 Zinc(II)-Regulation of Hydrazone Switch Isomerization Kinetics Org. Lett. 15 5952CrossRefGoogle Scholar
  3. 3.
    Krishnamoorthy P, Sathyadevi P, Butorac R R, Cowley A H, Bhuvanesh N S P and Dharmaraj N 2012 Variation in the biomolecular interactions of nickel(II) hydrazone complexes upon tuning the hydrazide fragment Dalton Trans. 41 6842CrossRefGoogle Scholar
  4. 4.
    Su X and Aprahamian I 2014 Hydrazone-based switches, metallo-assemblies and sensors Chem. Soc. Rev. 43 1963CrossRefGoogle Scholar
  5. 5.
    Angelusiu M V, Barbuceanu S F, Draghici C and Almajan G L 2010 New Cu(II), Co(II), Ni(II) complexes with aroyl-hydrazone based ligand. Synthesis, spectroscopic characterization and in vitro antibacterial evaluation Eur. J. Med. Chem. 45 2055CrossRefGoogle Scholar
  6. 6.
    Kobayashi A, Dosen M, Chang M, Nakajima K, Noro S and Kato M 2010 Synthesis of Metal-Hydrazone Complexes and Vapochromic Behavior of Their Hydrogen-Bonded Proton-Transfer Assemblies J. Am. Chem. Soc. 132 15286CrossRefGoogle Scholar
  7. 7.
    Naskar S, Naskar S, Butcher R J and Chattopadhyay K S 2010 Synthesis and spectroscopic properties of Ni(II) complexes of some aroyl hydrazone ligands with 2,6-diacetyl pyridine monooxime: X-ray crystal structure of the salicyloylhydrazone Ni(II) complex Inorg. Chim. Acta 363 404CrossRefGoogle Scholar
  8. 8.
    Aslan H G, Ozcan S and Karacan N 2011 Synthesis, characterization and antimicrobial activity of salicylaldehyde benzenesulfonylhydrazone (Hsalbsmh)and its Nickel(II), Palladium(II), Platinum(II), Copper(II), Cobalt(II) complexes Inorg. Chem. Commun. 14 1550CrossRefGoogle Scholar
  9. 9.
    Wang Q, Yang Z Y, Qi G F and Qin D D 2009 Crystal structures, DNA-binding studies and antioxidant activities of the Ln(III) complexes with 7-methoxychromone3-carbaldehyde-isonicotinoyl hydrazone BioMetals 22 927CrossRefGoogle Scholar
  10. 10.
    Xu Z, Zhang X, Zhang W, Gao Y and Zeng Z 2011 Synthesis, characterization, DNA interaction and antibacterial activities of two tetranuclear cobalt(II) and nickel(II) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone Inorg. Chem. Commun. 14 1569CrossRefGoogle Scholar
  11. 11.
    Kratz F, Beyer V, Roth T, Tarasova N, Collery P, Lechenault F, Cazabat A, Shumacher P, Unger C and Falkem U 1998 Transferrin Conjugates of Doxorubicin: Synthesis, Characterization, Cellular Uptake, and in Vitro Efficacy J. Pharm. Sci. 87 338CrossRefGoogle Scholar
  12. 12.
    Li Y, Yang Z, Zhoua M and Li Y 2017 Synthesis and crystal structure of new monometallic Ni(II) and Co(II) complexes with an asymmetrical aroylhydrazone: effects of the complexes on DNA/protein binding property, molecular docking, and in vitro anticancer activity RSC Adv. 7 49404CrossRefGoogle Scholar
  13. 13.
    Jayanthi E, Kalaiselvi S, Padma V V, Bhuvanesh N S P and Dharmaraj N 2016 Solvent assisted formation of ruthenium(III) and ruthenium(II) hydrazone complexes in one-pot with potential in vitro cytotoxicity and enhanced LDH, NO and ROS release Dalton Trans. 45 1693CrossRefGoogle Scholar
  14. 14.
    Sathyadevi P, Krishnamoorthy P, Butorac R R, Cowley A H and Dharmaraj N 2012 Synthesis of novel heterobimetallic copper(I) hydrazone Schiff base complexes: A comparative study on the effect of heterocyclic hydrazides towards interaction with DNA/protein, free radical scavenging and cytotoxicity Metallomics 4 498CrossRefGoogle Scholar
  15. 15.
    Krishnamoorthy P, Sathyadevi P, Butorac R R, Cowley A H, Bhuvanesh N S P and Dharmaraj N 2012 Copper(I) and nickel(II) complexes with 1:1 vs. 1:2 coordination of ferrocenyl hydrazone ligands: Do the geometry and composition of complexes affect DNA binding/cleavage, protein binding, antioxidant and cytotoxic activities? Dalton Trans. 41 4423CrossRefGoogle Scholar
  16. 16.
    Palepu N R and Kollipara M R 2017 Half-sandwich ruthenium, rhodium and iridium complexes of triazolopyridine ligand: Synthesis and structural studies J. Chem. Sci. 129 177CrossRefGoogle Scholar
  17. 17.
    Singh K S, Wang P, Narkhede N A and Mozharivskyj Y 2017 Iridium(III) and Rhodium(III) compounds of dipyridyl-N-alkylimine and dipyridyl-NH-ketimine: Spectral characterization and crystal structure J. Chem. Sci. 129 365CrossRefGoogle Scholar
  18. 18.
    Palepu N R, Kaminsky W and Kollipara M R 2017 Synthesis and structural studies of half-sandwich Cp* rhodium and Cp* iridium complexes featuring mono, bi and tetradentate nitrogen and oxygen donor ligands J. Chem. Sci. 129 561CrossRefGoogle Scholar
  19. 19.
    Katual M and Dutt G 1975 Analytical applications of hydrazones Talanta 22 151CrossRefGoogle Scholar
  20. 20.
    Franceschelli J J, Belardinelli M J, Tong P, Loftus B, Recio-Balsells A, Labadie G R, Gordon S V and Morbidoni H 2018 A katG S315T or an ahpC promoter mutation mediate Mycobacterium tuberculosis resistance to 2-thiophen carboxylic acid hydrazide, an inhibitor resembling the anti-tubercular drugs Isoniazid and Ethionamide Tuberculosis 112 69CrossRefGoogle Scholar
  21. 21.
    Mishra M, Tiwari K, Shukla S, Mishra R and Singh V P 2014 Synthesis, structural investigation, DNA and protein binding study of some 3d-metal complexes with N\(\prime \)-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide Spectrochim. Acta Part A 132 452CrossRefGoogle Scholar
  22. 22.
    Ravesh A and Malhotra R 2018 Synthesis, Characterization and Antimicrobial Screening of Organotin (IV) complexes derived from Schiff bases of Pyrazine-2-carboxylic acid hydrazide Asian J. Res. Chem. 11 262CrossRefGoogle Scholar
  23. 23.
    Mallandur K B, Rangaiah and Harohally K N 2017 Synthesis and antimicrobial activity of Schiff bases derived from 2-chloro quinoline-3-carbaldehyde and its derivatives incorporating 7-methyl-2-propyl-3\(H\)-benzoimidazole-5-carboxylic acid hydrazide Synth. Commun. 47 1065Google Scholar
  24. 24.
    Xu P, Wang G, Wu Z, Li S and Zhu C 2017 Rh(III)-catalyzed double C–H activation of aldehyde hydrazones: a route for functionalized 1\(H\)-indazole synthesis Chem. Sci. 8 1303CrossRefGoogle Scholar
  25. 25.
    Chuang S, Gandeepan P and Cheng C 2013 Synthesis of isoquinolines via Rh(III)-catalyzed C-H activation using hydrazone as a new oxidizing directing group Org. Lett. 15 5750CrossRefGoogle Scholar
  26. 26.
    Zheng L and Hua R 2014 Rhodium(III)-Catalyzed C-H activation and indole synthesis with hydrazone as an auto-formed and auto-cleavable directing group Chem. Eur. J. 20 2352CrossRefGoogle Scholar
  27. 27.
    Dawson W R and Windsor M W 1968 Fluorescence Yields of Aromatic Compounds J. Phys. Chem. 72 3251 and references thereinCrossRefGoogle Scholar
  28. 28.
    Meech S R and Phillips D 1983 Photophysics of some common fluorescence standards J. Photochem. 23 193 and references thereinGoogle Scholar
  29. 29.
    Van Houten J and Watts R J 1976 Temperature dependence of the photophysical and photochemical properties of the tris(2,2’-bipyridyl)ruthenium(II) ion in aqueous solution J. Am. Chem. Soc. 98 4853CrossRefGoogle Scholar
  30. 30.
    Sheldrick G M 2003 SHELXTL v. 6.14; Bruker AXS Inc.: Madison, WIGoogle Scholar
  31. 31.
    Johnson C K ORTEP report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 976.Google Scholar
  32. 32.
    Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys. 98 5648Google Scholar
  33. 33.
    Lee C, Yang W R and Parr G 1988 Development of the colle-salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B: Condens. Matter 37 785CrossRefGoogle Scholar
  34. 34.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 Gaussian, Inc., Wallingford CT,GAUSSIAN 09 (Revision A.01)Google Scholar
  35. 35.
    Autschbach J, Ziegler T, Gisbergen S J A and Baerends E J 2002 Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules J. Chem. Phys. 116 6930CrossRefGoogle Scholar
  36. 36.
    Bak K L, Jørgensen P, Helgaker T, Ruud K and Jensen H J A 1993 Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism J. Chem. Phys. 98 8873CrossRefGoogle Scholar
  37. 37.
    Helgaker T and Jørgensen P 1991 An electronic hamiltonian for origin independent calculations of magnetic properties J. Chem. Phys. 95 2595CrossRefGoogle Scholar
  38. 38.
    Gross E K U and Kohn W 1990 Time-dependent density-functional theory Adv. Quantum Chem. 21 255CrossRefGoogle Scholar
  39. 39.
    Cossi M, Rega N, Scalmani G and Barone V J 2003 Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model J. Comput. Chem. 24 669 39.Google Scholar
  40. 40.
    Barone V and Cossi M 2001 Time-dependent density functional theory for molecules in liquid solutions J. Chem. Phys. 115 4708CrossRefGoogle Scholar
  41. 41.
    Barone V and Cossi M 1998 Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model J. Phys. Chem. A 102 Google Scholar
  42. 42.
    Liu T, Zhang H X and Xia B H 2007 Theoretical studies on structures and spectroscopic properties of a series of novel cationic \([{{trans}}\text{- } (\text{ C }^{\wedge }\text{ N })_{2} \text{ Ir } (\text{ PH }_{3})_{2}]^{+}\) (\(\text{ C }^{\wedge } \text{ N } = \text{ ppy }\), bzq, ppz, dfppy) J. Phys. Chem. A 111 8724CrossRefGoogle Scholar
  43. 43.
    Albertino A, Garino C and Ghiani S 2007 Photophysical properties and computational investigations of tricarbonylrhenium(I)[2-(4-methylpyridin-2-yl)benzo[\(d\)]-X-azole]L and tricarbonylrhenium(I)[2-(benzo[\(d\)]-X-azol-2-yl)-4-methylquinoline]L derivatives (\(\text{ X } = \text{ N }{-}\text{ CH }_{3}\), O, or S; \(\text{ L } = {\text{ Cl }}^{-}\), pyridine) J. Organomet. Chem. 692 1377CrossRefGoogle Scholar
  44. 44.
    Zhou X, Zhang H X, Pan Q J, Xia B H and Tang A C 2005 Theoretical studies of the spectroscopic properties of \([\text{ Pt(trpy)C } \vdots \text{ CR }]^{+}\) (\(\text{ trpy } = 2\),2’,6’,2”-terpyridine; \(\text{ R } = \text{ H }\), \(\text{ CH }_{2} \text{ OH }\), and \(\text{ C }_{6} \text{ H }_{5}\)) J. Phys. Chem. A 109 8809CrossRefGoogle Scholar
  45. 45.
    Zhou X, Ren A M and Feng J K 2005 Theoretical studies on the ground states in \(\text{ M(terpyridine) }_{2}^{2+}\) and \(\text{ M(n-butyl-phenylterpyridine) }_{2}^{2+}\) (\(\text{ M } = \text{ Fe }\), Ru, Os) and excited states in \(\text{ Ru(terpyridine) }_{2}^{2+}\) using density functional theory J. Organomet. Chem. 690 338CrossRefGoogle Scholar
  46. 46.
    Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals J. Chem. Phys. 82 299Google Scholar
  47. 47.
    Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg J. Chem. Phys. 82 270CrossRefGoogle Scholar
  48. 48.
    Gordon M S, Binkley J S, Pople J A, Pietro W J and Hehre W J 1982 Self-consistent molecular-orbital methods. 22. small split-valence basis sets for second-row elements J. Am. Chem. Soc. 104 2797CrossRefGoogle Scholar
  49. 49.
    Binkley J S, Pople J A and Hehre W J 1980 Self-consistent molecular-orbital methods. 21. small split-valence basis sets for second-row elements J. Am. Chem. Soc. 102 939CrossRefGoogle Scholar
  50. 50.
    O’Boyle N M, Tenderholt A L and Langne K M 2008 cclib: A library for package-independent computational chemistry algorithms J. Comput. Chem. 29 839CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of ChemistrySt. Xavier’s College (Autonomous)KolkataIndia
  2. 2.Department of ChemistryJadavpur UniversityKolkataIndia

Personalised recommendations