Journal of Chemical Sciences

, 131:16 | Cite as

Molecular dynamics based antimicrobial activity descriptors for synthetic cationic peptides

  • Malay Ranjan Biswal
  • Sandhya Rai
  • Meher K PrakashEmail author
Rapid Communication



There is an urgent need to identify novel antimicrobial drugs in light of the development of resistance by the bacteria for a broad spectrum of antibiotics. Antimicrobial peptides are proving to be an effective remedy to which bacteria have not been able to develop resistance easily. With the goal of progressing towards a rational design of AMPs, we developed a neural network based quantitative model relating their physicochemical properties to their activity. A set of synthetic cationic polypeptides (CAMEL-s) (Mee et al. in J. Peptide Res. 49:89, 1997) which were studied systematically in experiments was used in the development of our model. Intuitive variables derived from short molecular dynamics simulations in octanol were used as descriptors, resulting in a good prediction of activity and underscoring the possibility of a rational design.

Graphical abstract

Synopsis The dynamic properties of peptides calculated from molecular dynamics simulation are used as descriptors for the artificial neural network to predict the biological activity of the antimicrobial peptides.


QSAR CAMEL-s molecular dynamics artificial neural networks activity prediction drug design 


Supplementary material

12039_2019_1590_MOESM1_ESM.pdf (146 kb)
Supplementary material 1 (pdf 145 KB)


  1. 1.
    Jenssen H, Hamill P and Hancock R E W 2006 Peptide antimicrobial agents Clin. Microbiol. Rev. 19 491CrossRefGoogle Scholar
  2. 2.
    Radek K and Gallo R 2007 Antimicrobial peptides: Natural effectors of the innate immune system Semin. Immunopathol. 29 27CrossRefGoogle Scholar
  3. 3.
    Fox J L 2013 Antimicrobial peptides stage a comeback Nat. Biotechnol. 31 379CrossRefGoogle Scholar
  4. 4.
    Narayana J L and Chen J Y 2015 Antimicrobial peptides: Possible anti-infective agents Peptides 72 88Google Scholar
  5. 5.
    Brogden K A 2005 Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3 238CrossRefGoogle Scholar
  6. 6.
    Bahar A A and Ren D 2013 Antimicrobial peptides Pharmaceuticals 6 1543CrossRefGoogle Scholar
  7. 7.
    Mowery B P, Lee S E, Kissounko D A, Epand R F, Epand R M, Weisblum B, Stahl S S and Gellman S H 2007 Mimicry of antimicrobial host-defense peptides by random copolymers J. Am. Chem. Soc. 50 15474CrossRefGoogle Scholar
  8. 8.
    Goodman C M, Choi S, Shandler S and DeGrado W F 2007 Foldamers as versatile frameworks for the design and evolution of function Nat. Chem. Biol. 3 252CrossRefGoogle Scholar
  9. 9.
    Zasloff M 2002 Antimicrobial peptides of multicellular organisms Nature 415 389CrossRefGoogle Scholar
  10. 10.
    Mee R P, Auton T R and Morgan P J 1997 Design of active analogues of a 15-residue peptide using D-optimal design, QSAR and a combinatorial search algorithm J. Pept. Res. 49 89CrossRefGoogle Scholar
  11. 11.
    Kubinyi H 2002 From narcosis to hyperspace: The history of QSAR Quant. Struct. Act. Relat. 21 348CrossRefGoogle Scholar
  12. 12.
    Acharya C, Coop A, Polli J E and MacKerell A D Jr. 2011 Recent advances in ligand-based drug design: Relevance and utility of the conformationally sampled pharmacophore approach Curr. Comput. Aided Drug Des. 7 10CrossRefGoogle Scholar
  13. 13.
    Favia A D 2011 Theoretical and computational approaches to ligand-based drug discovery Front. Biosci. Landmark Ed. 16 1276Google Scholar
  14. 14.
    Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos M G, Hodoscek M and Grdadolnik S G 2011 Strategies in the rational drug design Curr. Med. Chem. 18 2517CrossRefGoogle Scholar
  15. 15.
    Verma J, Khedkar V M and Coutinho E C 2010 3D-QSAR in drug design: A review Curr. Top. Med. Chem. 10 95CrossRefGoogle Scholar
  16. 16.
    Bernard D, Coop A and MacKerell A D 2003 2D conformationally sampled pharmacophore: A ligand-based pharmacophore to differentiate \(\delta \) opioid agonists from antagonists J. Am. Chem. Soc. 125 3101CrossRefGoogle Scholar
  17. 17.
    Bernard D, Coop A and MacKerell A D 2007 Quantitative conformationally sampled pharmacophore for \(\delta \) opioid ligands: Reevaluation of hydrophobic moieties essential for biological activity J. Med. Chem. 50 1799CrossRefGoogle Scholar
  18. 18.
    Choudhury C, Priyakumar U D and Sastry G N 2015 Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase J. Chem. Inf. Model. 55 848CrossRefGoogle Scholar
  19. 19.
    Edlund C, Hedberg M, Engström Å, Flock J I and Wade D 1998 Antianaerobic activity of a cecropin-melittin peptide Clin. Microbiol. Infect. 4 181CrossRefGoogle Scholar
  20. 20.
    Oh H, Hedberg M, Wade D and Edlund C 2000 Activities of synthetic hybrid peptides against anaerobic bacteria: Aspects of methodology and stability Antimicrob. Agents Chemother. 44 68CrossRefGoogle Scholar
  21. 21.
    Cherkasov A and Jankovic B 2004 Application of inductive QSAR descriptors for quantification of antibacterial activity of cationic polypeptides Molecules 9 1034CrossRefGoogle Scholar
  22. 22.
    Torrent M, Andreu D, Nogués V M and Boix E 2011 Connecting peptide physicochemical and antimicrobial properties by a rational prediction model PloS One 6 e16968Google Scholar
  23. 23.
    Šali A and Blundell T L 1993 Comparative protein modelling by satisfaction of spatial restraints J. Mol. Biol.  234 779CrossRefGoogle Scholar
  24. 24.
    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B and Lindahl E 2015 GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers SoftwareX 1 19Google Scholar
  25. 25.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A and Simmerling C 2006 Comparison of multiple Amber force fields and development of improved protein backbone parameters Proteins 65 712Google Scholar
  26. 26.
    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 Comparison of simple potential functions for simulating liquid water J. Chem. Phys.  79 926CrossRefGoogle Scholar
  27. 27.
    Kaminski G A, Friesner R A, Tirado-Rives J and Jorgensen W L 2001 Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides J. Phys. Chem. B  105 6474CrossRefGoogle Scholar
  28. 28.
    Humphrey W, Dalke A and Schulten K 1996 VMD: Visual molecular dynamics J. Mol. Graph. 14 33CrossRefGoogle Scholar
  29. 29.
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M and Duchesnay E 2011 Scikit-learn: Machine learning in Python J. Mach. Learn. Res.  12 2825Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Theoretical Science UnitJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur, BengaluruIndia

Personalised recommendations