Journal of Chemical Sciences

, 131:13 | Cite as

Construction of metal oxide decorated \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\) materials with enhanced photocatalytic performance under visible light irradiation

  • T Vinodkumar
  • P Subramanyam
  • K V Ashok Kumar
  • Benjaram M Reddy
  • CH SubrahmanyamEmail author
Regular Article



Herein we report the synthesis and photocatalytic evaluation of heterostructure \(\hbox {WO}_{{3}}/\hbox {g-C}_{{3}}\hbox {N}_{{4}}\) (WMCN) and \(\hbox {CeO}_{{2}}/\hbox {g-C}_{{3}}\hbox {N}_{4}\) (CMCN) materials for RhB degradation and photoelectrochemical studies. These materials were synthesized by varying the dosages of \(\hbox {WO}_{{3}}\) and \(\hbox {CeO}_{2 }\) on \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\) individually and were characterized with state-of-the-art techniques like XRD, BET surface area, FT-IR, UV–Vis DRS, TGA, SEM, TEM and XPS. A collection of combined structural and morphological studies manifested the formation of bare \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\), \(\hbox {WO}_{{3}}\), \(\hbox {CeO}_{{2}}\), \(\hbox {WO}_{{3}}/\hbox {g-C}_{{3}}\hbox {N}_{{4}}\) and \(\hbox {CeO}_{{2}}/\hbox {g-C}_{{3}}\hbox {N}_{4 }\) materials. From the degradation results, we found that the material with 10 wt% \(\hbox {WO}_{{3}}\) and 15 wt% \(\hbox {CeO}_{{2}}\) content on \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\) showed the highest visible light activity. The first order rate constant for the photodegradation performance of WMCN10 and CMCN15 is found to be 5.5 and 2.5 times, respectively, greater than that of \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\). Photoelectrochemical studies were also carried out on the above materials. Interestingly, the photocurrent density of WMCN10 photoanode achieved \(1.45\,\hbox {mA cm}^{-2}\) at 1.23 V (vs.) RHE and this is much larger than all the prepared materials. This enhanced photoactivity of WMCN10 is mainly due to the cooperative synergy of \(\hbox {WO}_{{3}}\) with \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\), which enhanced the visible light absorption and suppresses the electron–hole recombination.

Graphical Abstract

Synopsis The WMCN materials exhibited superior photocatalytic performance than CMCN and bare \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\) materials due to the existence of synergism between \(\hbox {WO}_{{3}}\) and \(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\).


\(\hbox {g-C}_{{3}}\hbox {N}_{{4}}\) rhodamine B photocatalysis heterojunction 



TV is thankful to the DST-Science and Engineering Research Board (SERB) for the award of the National Post Doctoral Fellowship (PDF/2016/003661). BMR thanks the Department of Atomic Energy (DAE), Mumbai, for the award of the Raja Ramanna Fellowship.

Supplementary material

12039_2018_1588_MOESM1_ESM.pdf (526 kb)
Supplementary material 1 (pdf 525 KB)


  1. 1.
    Wang Z, Huo Y, Fan Y, Wu R, Wu H, Wang F and Xu X 2018 Facile synthesis of carbon-rich \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) by copolymerization of urea and tetracyanoethylene for photocatalytic degradation of Orange II J. Photochem. Photobiol. A Chem. 358 61CrossRefGoogle Scholar
  2. 2.
    Li H, Zhao F, Zhang J, Luo L, Xiao X, Huang Y, Ji H and Tong Y 2017 A \(\text{ g-C }_{{3}}\text{ N }_{{4}}/\text{ WO }_{{3}}\) photoanode with exceptional ability for photoelectrochemical water splitting Mater. Chem. Front.  1 338CrossRefGoogle Scholar
  3. 3.
    Ashok Kumar K V, Chandana L, Ghosal P and Subrahmanyam C H 2018 Simultaneous photocatalytic degradation of p-cresol and Cr (VI) by metal oxides supported reduced graphene oxide Mol. Catal. 451 87CrossRefGoogle Scholar
  4. 4.
    Sun Z, Wang H, Wu Z and Wang L 2018 \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) based composite photocatalysts for photocatalytic \(\text{ CO }_{{2}}\) reduction Catal. Today  300 160CrossRefGoogle Scholar
  5. 5.
    Zou W, Shao Y, Pu Y, Luo Y, Sun J, Ma K, Tang C, Gao F and Dong L 2017 Enhanced visible light photocatalytic hydrogen evolution via cubic \(\text{ CeO }_{{2}}\) hybridized \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) composite Appl. Catal. B Environ. 218 51CrossRefGoogle Scholar
  6. 6.
    Ye C, Li J X, Li Z J, Li X B, Fan X B, Zhang L P, Chen B, Tung C H and Wu L Z 2015 Enhanced driving force and charge separation efficiency of protonated \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) for photocatalytic \(\text{ O }_{{2}}\) evolution ACS Catal. 5 6973CrossRefGoogle Scholar
  7. 7.
    Liu X, Jin A, Jia Y, Xia T, Deng C, Zhu M, Chen C and X Chen 2017 Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of \(\text{ WO }_{{3}}/\text{ g-C }_{{3}}\text{ N }_{4 }\) Appl. Surf. Sci. 405 359CrossRefGoogle Scholar
  8. 8.
    Liang Z Y, Wei J X, Wang X, Yu Y and Xiao F X 2017 Elegant Z-scheme-dictated \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) enwrapped \(\text{ WO }_{{3}}\) superstructures: a multifarious platform for versatile photoredox catalysis J. Mater. Chem. A 5 15601CrossRefGoogle Scholar
  9. 9.
    Zhang G, Lan Z A, Lin L, Lin S and X Wang 2016 Overall water splitting by Pt/\(\text{ g-C }_{{3}}\text{ N }_{{4}}\) photocatalysts without using sacrificial agents Chem. Sci. 7 3062CrossRefGoogle Scholar
  10. 10.
    Martin D J, Reardon P J T, Moniz S J A and Tang J 2014 Visible Light-Driven pure water pplitting by a Nature-Inspired organic Semiconductor-Based system J. Am. Chem. Soc.  136 12568CrossRefGoogle Scholar
  11. 11.
    Yu S, Webster R D, Zhou Y and Yan X 2017 Ultrathin \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) nanosheets with hexagonal CuS nanoplates as a novel composite photocatalyst under solar light irradiation for \(\text{ H }_{{2}}\) production Catal. Sci. Technol. 7 2050CrossRefGoogle Scholar
  12. 12.
    Wang C H, Qin D D, Shan D L, Gu J, Yan Y, Chen J, Wang Q H, He C H, Li Y, Quan J J and Lu X Q 2017 Assembly of \(\text{ g-C }_{{3}}\text{ N }_{{4}}\)-based type II and Z-scheme heterojunction anodes with improved charge separation for photoelectrojunction water oxidation Phys. Chem. Chem. Phys. 19 4507CrossRefGoogle Scholar
  13. 13.
    Dong P, Yang B, Liu C, Xu F, Xi X, Hou G and Shao R 2017 Highly enhanced photocatalytic activity of \(\text{ WO }_{{3}}\) thin films loaded with Pt–Ag bimetallic alloy nanoparticles RSC Adv.  7 947CrossRefGoogle Scholar
  14. 14.
    Xiao T, Tang Z, Yang Y, Tang L, Zhou Y and Zou Z 2018 In situ construction of hierarchical \(\text{ WO }_{{3}}/\text{ g-C }_{{3}}\text{ N }_{{4}}\) composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics Appl. Catal. B Environ. 220 417CrossRefGoogle Scholar
  15. 15.
    Vinodkumar T, Naga Durgasri D, Maloth S and Reddy B M 2015 Tuning the structural and catalytic properties of ceria by doping with \(\text{ Zr }^{4+}\), \(\text{ La }^{3+}\), and \(\text{ Eu }^{3+}\) cations J. Chem. Sci.  127 1145CrossRefGoogle Scholar
  16. 16.
    Jourshabani M, Shariatinia Z and Badiei A 2017 Facile one-pot synthesis of cerium oxide/sulfur-doped graphitic carbon nitride (\(\text{ g-C }_{{3}}\text{ N }_{4})\) as efficient nanophotocatalysts under visible light irradiation J. Colloid Interface Sci.  507 59CrossRefGoogle Scholar
  17. 17.
    Channei D, Inceesungvorn B, Wetchakun N, Ukritnukun S, Nattestad A, Chen J and Phanichphant S 2014 Photocatalytic degradation of methyl orange by \(\text{ CeO }_{{2}}\) and Fe–doped \(\text{ CeO }_{{2}}\) films under visible light irradiation Sci. Rep. 4 5757CrossRefGoogle Scholar
  18. 18.
    Vinodkumar T, Govinda Rao B and Reddy B M 2015 Influence of isovalent and aliovalent dopants on the reactivity of cerium oxide for catalytic applications Catal. Today  253 57CrossRefGoogle Scholar
  19. 19.
    Vinodkumar T, Naga Durgasri D, Reddy B M and Alxneit I 2014 Synthesis and structural characterization of \(\text{ Eu }_{{2}}\text{ O }_{{3}}\) doped \(\text{ CeO }_{{2}}\): influence of oxygen defects on CO oxidation Catal. Lett. 144 2033CrossRefGoogle Scholar
  20. 20.
    Vinodkumar T, Mukherjee D, Subrahmanyam C H and Reddy B M Investigation on the physicochemical properties of \(\text{ Ce }_{0.8}\text{ Eu }_{0.1}\text{ M }_{0.1}\text{ O }_{2-\delta }\)(M = Zr, Hf, La, and Sm) solid solutions towards soot combustion New J. Chem. 42 5276CrossRefGoogle Scholar
  21. 21.
    Li F, Tian X, Yuhong Z, Jun Y, Aiwu W and Zhong W 2015 Preparation of \(\text{ WO }_{{3}}\)-reduced graphene oxide nanocomposites with enhanced photocatalytic property Ceram. Int. 41 5903CrossRefGoogle Scholar
  22. 22.
    Chengsi P, Dengsong Z, Liyi S and Jianhui F 2008 Template-Free Synthesis, Controlled Conversion, and CO Oxidation Properties of \(\text{ CeO }_{{2}}\) Nanorods, Nanotubes, Nanowires, and Nanocubes Eur. J. Inorg. Chem. 2008 2429CrossRefGoogle Scholar
  23. 23.
    Liying H, Yeping L, Hui X, Yuanguo X, Jixiang X, Wang K, Huaming L and Xiaonong C 2013 Synthesis and characterization of \(\text{ CeO }_{{2}}/\text{ g-C }_{{3}}\text{ N }_{{4}}\) composites with enhanced visible-light photocatatalytic activity RSC Adv. 3 22269CrossRefGoogle Scholar
  24. 24.
    Liying H, Hui X, Li Y, Huaming L, Xiaonong C, Jixiang X, Yuanguo X and Guobin C 2013 Visible-light-induced \(\text{ WO }_{{3}}/\text{ g-C }_{{3}}\text{ N }_{{4}}\) composites with enhanced photocatalytic activity Dalton Trans.  42 8606CrossRefGoogle Scholar
  25. 25.
    Fina F, Callear S K, Carins G M and Irvine J T S 2015 Structural investigation of graphitic carbon nitride via XRD and Neutron Diffraction Chem. Mater. 27 2612CrossRefGoogle Scholar
  26. 26.
    Chen Y and Wang X 2018 Template-free synthesis of hollow G-\(\text{ C }_{{3}}\text{ N }_{{4}}\) polymer with vesicle structure for enhanced photocatalytic water splitting J. Phys. Chem. C  122 3786CrossRefGoogle Scholar
  27. 27.
    Ansari S A and Cho M H 2017 Simple and large scale construction of \(\text{ MoS }_{{2}}\)-\(\text{ g-C }_{{3}}\text{ N }_{{4}}\) heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications Sci. Rep.  7 43055CrossRefGoogle Scholar
  28. 28.
    Yuan X, Duan S, Wu G, Sun L, Cao G, Li D, Xu H, Li Q and D Xia 2018 Enhanced catalytic ozonation performance of highly stabilized mesoporous ZnO doped \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) composite for efficient water decontamination Appl. Catal. A Gen. 551 129CrossRefGoogle Scholar
  29. 29.
    Li Y G, Wei X L, Yan X Y, Cai J T, Zhou A N, Yan M R and Liu K Q 2016 Construction of inorganic–organic 2D/2D \(\text{ WO }_{{3}}/\text{ g-C }_{{3}}\text{ N }_{{4}}\) nanosheet arrays toward efficient photoelectrochemical splitting of natural seawater Phys. Chem. Chem. Phys. 18 10255CrossRefGoogle Scholar
  30. 30.
    Zhang L, He Y, Wu Y and Wu T 2011 Photocatalytic degradation of RhB over \(\text{ MgFe }_{{2}}\text{ O }_{{4}}/\text{ TiO }_{{2}}\) composite materials Mater. Sci. Eng. B 176 1497 CrossRefGoogle Scholar
  31. 31.
    Rahman Q I, Ahmad M, Misra S K and Lohani M 2013 Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles Mater. Lett. 91 170CrossRefGoogle Scholar
  32. 32.
    de Moraes N P, Silva F N, Pinto da Silva M L C, Campos T M B, Thim G P and Rodrigues L A 2018 Methylene blue photodegradation employing hexagonal prismshaped niobium oxide as heterogeneous catalyst: effect of catalyst dosage, dye concentration, and radiation source Mater. Chem. Phys. 214 95CrossRefGoogle Scholar
  33. 33.
    Ashok Kumar K V, Amanchi S R, Sreedhar B, Ghosal P and Subrahmanyam C H 2017 Phenol and Cr(VI) degradation with Mn ion doped ZnO under visible light photocatalysis. RSC Adv. 7 43030CrossRefGoogle Scholar
  34. 34.
    Karimi-Nazarabada M and Goharshadi E K 2017 Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven \(\text{ WO }_{{3}}/\text{ g-C }_{{3}}\text{ N }_{{4}}\) nanocomposite Sol. Energy Mater. Sol. Cells  160 484CrossRefGoogle Scholar
  35. 35.
    Li J, Hao H and Zhu Z 2016 Construction of \(\text{ g-C }_{{3}}\text{ N }_{{4}}-\text{ WO }_{{3}}\)-\(\text{ Bi }_{{2}}\text{ WO }_{{6}}\) double Z-scheme system with enhanced photoelectrochemical performance Mater. Lett. 168 180CrossRefGoogle Scholar
  36. 36.
    Bi C, Cao J, Lina H, Wang Y and Chen S 2016 Enhanced photocatalytic activity of \(\text{ Bi }_{{12}}\text{ O }_{{17}}\text{ Cl }_{{2}}\) through loading Pt quantum dots as a highly efficient electron capturer Appl. Catal. B Environ. 195 132CrossRefGoogle Scholar
  37. 37.
    Zhu W, Sun F, Goei R and Zhou Y 2017 Construction of \(\text{ WO }_{{3}}-\text{ g-C }_{{3}}\text{ N }_{{4}}\) composites as efficient photocatalysts for pharmaceutical degradation under visible light Catal. Sci. Technol.  7 2591CrossRefGoogle Scholar
  38. 38.
    Li H, Yu H, Quan X, Chen S and Zhang Y 2016 Uncovering the key role of the Fermi level of the electron mediator in a Z-Scheme photocatalyst by detecting the charge transfer process of \(\text{ WO }_{{3}}\)-metal \(\text{ g-C }_{{3}}\text{ N }_{{4}}\) (Metal = Cu, Ag, Au) ACS Appl. ACS Appl Mater. Interfaces  8 2111CrossRefGoogle Scholar
  39. 39.
    Ge M, Junlin L, Qingguo M, Haiqin L, Lingling S, Yongguang Z, Mingliang J, Zhihong C, Mingzhe Y, Richard N, Xin W, Chuanyi W, Jun-Ming L and Guofu Z 2018 Synergistic effect of Cu-ion and \(\text{ WO }_{{3}}\) nanofibers on the enhanced photocatalytic degradation of Rhodamine B and aniline solution Appl. Surf. Sci. 451 306CrossRefGoogle Scholar
  40. 40.
    Arunadevi R, Kavitha B, Rajarajan M and Suganthi A 2018 Synthesis of Ce/Mo-\(\text{ V }_{{4}}\text{ O }_{{9}}\)nanoparticles with superior visible light photocatalytic activity for Rhodamine-B degradation J. Environ. Chem. Eng. 6 3349CrossRefGoogle Scholar
  41. 41.
    Huoshi C and Zhaodong N 2018 Monodisperse Zn-doped \(\text{ Fe }_{{3}}\text{ O }_{{4}}\) formation and photo-Fenton activity for degradation of rhodamine B in water J. Phys. Chem. Solids  121 1Google Scholar
  42. 42.
    Jinpeng Y, Yijun Y, Huimin H, Pengcheng M, Yanhong S and Xia L 2018 Carbon nitrides modified with suitable electron withdrawing groups enhancing the visible-light-driven photocatalytic activity for degradation of the Rhodamine B Mater. Res. Bull.  106 204CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • T Vinodkumar
    • 1
  • P Subramanyam
    • 1
  • K V Ashok Kumar
    • 1
  • Benjaram M Reddy
    • 2
  • CH Subrahmanyam
    • 1
    Email author
  1. 1.Department of ChemistryIndian Institute of TechnologyHyderabadIndia
  2. 2.Inorganic and Physical Chemistry DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations