Advertisement

Journal of Chemical Sciences

, 131:10 | Cite as

A novel benzophenone-based colorimetric chemosensor for detecting \(\hbox {Cu}^{2+ }\) and \(\hbox {F}^{-}\)

  • Dongju Yun
  • Ju Byeong Chae
  • Cheal Kim
Regular Article
  • 4 Downloads

Abstract

A novel selective colorimetric chemosensor ANBP ((E)-(2-(((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)amino)-5-nitrophenyl)(phenyl)methanone), based on the combination of benzophenone group and julolidine chromophore, was synthesized. Sensor ANBP showed rapid colorimetric responses toward \(\hbox {Cu}^{2+}\) (pale orange to pink) and \(\hbox {F}^{-}\) (orange to blue). The detection limit by ANBP to \(\hbox {Cu}^{2+}\) (6.82 \(\upmu \)M) was far below WHO guideline value (31.3 \(\upmu \)M). Moreover, ANBP could quantify \(\hbox {Cu}^{2+}\) in aqueous samples. 1:1 binding mode between ANBP and \(\hbox {Cu}^{2+}\) or \(\hbox {F}^{-}\) was proposed by ESI-mass analyses and Job plots. The remarkable color changes with \(\hbox {Cu}^{2+}\) and \(\hbox {F}^{-}\) resulted from the intramolecular charge transfer (ICT) effect, which was demonstrated by theoretical calculations.

Graphical abstract

A novel selective colorimetric chemosensor ANBP, based on the combination of benzophenone group and julolidine chromophore, was designed and synthesized. Sensor ANBP showed rapid colorimetric responses toward \(\hbox {Cu}^{2+}\) (pale orange to pink) and \(\hbox {F}^{-}\) (orange to blue).

Keywords

Fluoride colorimetric chemosensor copper ion theoretical calculations 

Notes

Acknowledgements

We acknowledge the National Research Foundation of Korea (NRF-2018R1A2B6001686).

Supplementary material

12039_2018_1585_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (pdf 1382 KB)

References

  1. 1.
    Jiao X, Li Y, Niu J, Xie X, Wang X and Tang B 2018 Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems Anal. Chem.  90 533CrossRefGoogle Scholar
  2. 2.
    Goswami S, Aich K, Das A K and Das S 2015 A naphthalimide-quinoline based probe for selective, fluorescence ratiometric sensing of trivalent ions RSC Adv.  5 38591Google Scholar
  3. 3.
    Kumar L, Asif M and Kumar V 2017 Dual ion selective fluorescence sensor with potential applications in sample monitoring and membrane sensing Sens. Actuat. B Chem.  241 1090Google Scholar
  4. 4.
    Zhou Y, Zhang J F and Yoon J 2014 Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection Chem. Rev.  114 5511CrossRefGoogle Scholar
  5. 5.
    Hwang S M, Chae J B and Kim C 2018 A Phenanthroimidazole-based Fluorescent Turn-Off Chemosensor for the Selective Detection of Cu\(^{2+}\) in Aqueous Media Bull. Korean Chem. Soc.  39 925Google Scholar
  6. 6.
    Wang Z, Wu Q, Li J, Qiu S, Cao D, Xu Y, Liu Z, Yu X and Sun Y 2017 Two benzoyl coumarin amide fluorescence chemosensors for cyanide anions Spectrochim. Acta Part A  183 1CrossRefGoogle Scholar
  7. 7.
    Ghule N V, Bhosale R S, Puyad A L and Bhosale S V 2016 Naphthalenediimide amphiphile based colorimetric probe for recognition of Cu\(^{2+ }\)and Fe\(^{3+ }\)ions Sens. Actuat. B Chem.  227 17CrossRefGoogle Scholar
  8. 8.
    Jung J M, Lee S Y, Nam E, Lim M H and Kim C 2017 A highly selective turn-on chemosensor for Zn\(^{2+}\) in aqueous media and living cells Sens. Actuat. B Chem.  244 1045CrossRefGoogle Scholar
  9. 9.
    Jiang H, Li Z, Kang Y, Ding L, Qiao S and Jia S 2017 A two-photon fluorescent probe for Cu\(^{2+}\) based on dansyl moiety and its application in bioimaging Sens. Actuat. B Chem  242 112CrossRefGoogle Scholar
  10. 10.
    Tang L, Zheng Z and Bian Y 2016 A N-(2-hydroxyethyl)piperazine dangled 2,5-diphenyl-1,3,4-oxadiazole-based fluorescent sensor for selective relay recognition of Cu\(^{2+}\) and sulfide in water Luminescence  31 1456Google Scholar
  11. 11.
    Parsaee Z, Haratipour P, Janghorban M and Vojood A 2018 Ultrasonics - Sonochemistry A novel high performance nano chemosensor for copper (II) ion based on an ultrasound-assisted synthesized diphenylamine-based Schi ff base: Design, fabrication and density functional theory calculations Ultrason. Sonochem.  41 337CrossRefGoogle Scholar
  12. 12.
    Vulpe C, Levinson B, Whitney S, Packman S and Gischier J 1993 Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase Nature Genetics  3 7CrossRefGoogle Scholar
  13. 13.
    Maity D and Govindaraju T 2011 Highly selective visible and near-IR sensing of Cu\(^{2+ }\)based on thiourea-salicylaldehyde coordination in aqueous media Chem. - A Eur. J.  17 1410Google Scholar
  14. 14.
    Tang L, Zhou P, Zhong K and Hou S 2013 Fluorescence relay enhancement sequential recognition of Cu\(^{2+ }\)and CN\(^{-}\) by a new quinazoline derivative Sens. Actuat. B Chem.  182 439CrossRefGoogle Scholar
  15. 15.
    Devaraj S, Saravanakumar D and Kandaswamy M 2009 Dual responsive chemosensors for anion and cation: Synthesis and studies of selective chemosensor for F\(^{-}\) and Cu(II) ions Sens. Actuat. B Chem.  136 13CrossRefGoogle Scholar
  16. 16.
    Goswami S, Sen D and Das N K 2010 A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu\(^{2+}\) with a remarkable red shift in absorption and emission spectra based on internal charge transfer Org. Lett.  12 856CrossRefGoogle Scholar
  17. 17.
    Liu C, Xu J, Yang F, Zhou W, Li Z, Wei L and Yu M 2015 Nanomolar Cu\(^{2+}\) and F\(^{-}\) naked-eye detection with a 1,8-naphthalimide-based colorimetric probe Sens. Actuat. B Chem.  212 364CrossRefGoogle Scholar
  18. 18.
    Zhou Y, Wang F, Kim Y, Kim S J and Yoon J 2009 Cu\(^{2+}\)-Selective Ratiometric and “Off-On” Sensor Based on the Rhodamine Derivative Bearing Pyrene Group Org. Lett.  11 4442CrossRefGoogle Scholar
  19. 19.
    Peralta-Domínguez D, Rodriguez M, Ramos-Ortiz G, Maldonado J L, Luna-Moreno D, Ortiz-Gutierrez M and Barba V 2016 A Schiff base derivative used as sensor of copper through colorimetric and surface plasmon resonance techniques Sens. Actuat. B Chem. 225 221Google Scholar
  20. 20.
    Jo T G, Na Y J, Lee J J, Lee M M, Lee S Y and Kim C 2015 A diaminomaleonitrile based selective colorimetric chemosensor for copper(ii) and fluoride ions New J. Chem.  39 2580CrossRefGoogle Scholar
  21. 21.
    Kleerekoper M 1998 The role of fluoride in the prevention of osteoporosis Endocrinol. Metab. Clin. North Am.  27 441CrossRefGoogle Scholar
  22. 22.
    Michigami Y, Kuroda Y, Ueda K and Yamamoto Y 1993 Determination of urinary fluoride by ion chromatography Anal. Chim. Acta  274 299CrossRefGoogle Scholar
  23. 23.
    Liu J-M, Lin L, Wang X-X, Jiao L, Cui M L, Jiang S L, Cai W L, Zhang L H and Zheng Z Y 2013 Zr(H\(_{2}\)O)\(_{2}\)EDTA modulated luminescent carbon dots as fluorescent probes for fluoride detection Analyst  138 278Google Scholar
  24. 24.
    Taner B, Kursunlu A N and Güler E 2014 The example of calix[4]pyrrole derivative containing Bodipy unit: fluorometric and colorimetric sensor for F\(^{-}\) ion Spectrochim. Acta A  118 903CrossRefGoogle Scholar
  25. 25.
    Hu R, Feng J, Hu D, Wang S, Li S, Li Y and Yang G 2010 A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes Angew. Chem. Int. Ed. 49 4915CrossRefGoogle Scholar
  26. 26.
    Sokkalingam P and Lee C-H 2011 Highly Sensitive Fluorescence “Turn-On” Indicator for Fluoride Anion with Remarkable Selectivity in Organic and Aqueous Media J. Org. Chem.  76 3820CrossRefGoogle Scholar
  27. 27.
    Zhang J F, Lim C S, Bhuniya S, Cho B R and Kim J S 2011 A Highly Selective Colorimetric and Ratiometric Two-Photon Fluorescent Probe for Fluoride Ion Detection Org. Lett.  13 1190CrossRefGoogle Scholar
  28. 28.
    Thiampanya P, Muangsin N and Pulpoka B 2012 Azocalix[4]arene Strapped Calix[4]pyrrole: A Confirmable Fluoride Sensor Org. Lett.  14 4050CrossRefGoogle Scholar
  29. 29.
    Raposo M M M, García-Acosta B, Ábalos T, Calero P, Martínez-Máñez R, Ros-Lis J V and Soto J 2010 Synthesis and Study of the Use of Heterocyclic Thiosemicarbazones As Signaling Scaffolding for the Recognition of Anions J. Org. Chem.  75 2922CrossRefGoogle Scholar
  30. 30.
    Vázquez M, Fabbrizzi L, Taglietti A, Pedrido R M, González-Noya A M and Bermejo M R 2004 A Colorimetric Approach to Anion Sensing: A Selective Chemosensor of Fluoride Ions, in which Color is Generated by Anion-Enhanced\(\pi \) Delocalization Angew. Chem. Int. Ed.  43 1962CrossRefGoogle Scholar
  31. 31.
    Cho E J, Moon J W, Ko SW, Lee J Y, Kim S K, Yoon J and Nam K C 2003 A New Fluoride Selective Fluorescent as Well as Chromogenic Chemosensor Containing a Naphthalene Urea Derivative J. Am. Chem. Soc.  125 12376CrossRefGoogle Scholar
  32. 32.
    Boiocchi M, Del Boca L, Gómez D E, Fabbrizzi L, Licchelli M and Monzani E 2004 Nature of Urea-Fluoride Interaction: Incipient and Definitive Proton Transfer J. Am. Chem. Soc.  126 16507CrossRefGoogle Scholar
  33. 33.
    Rajamalli P and Prasad E 2011 Low Molecular Weight Fluorescent Organogel for Fluoride Ion Detection Org. Lett.  13 3714CrossRefGoogle Scholar
  34. 34.
    Lee M H, Quang D T, Jung H S, Yoon J, Lee C H and Kim J S 2007 Ion-Induced FRET On-Off in Fluorescent Calix[4]arene J. Org. Chem.  7 4242CrossRefGoogle Scholar
  35. 35.
    Lin Y-C and Chen C-T 2009 Acridinium Salt-Based Fluoride and Acetate Chromofluorescent Probes: Molecular Insights into Anion Selectivity Switching Org. Lett.  11 4858CrossRefGoogle Scholar
  36. 36.
    Kim T-H and Swager T M 2003 Ion Sensors A Fluorescent Self-Amplifying Wavelength-Responsive Sensory Polymer for Fluoride Ions Angew. Chem. Int. Ed.  42 4803CrossRefGoogle Scholar
  37. 37.
    Parab K, Venkatasubbaiah K and Jäkle F 2006 Luminescent Triarylborane-Functionalized Polystyrene: Synthesis, Photophysical Characterization, and Anion-Binding Studies J. Am. Chem. Soc.  128 12879CrossRefGoogle Scholar
  38. 38.
    Yun D, Jung J M and Kim C 2018 A fluorescent and colorimetric chemosensor for Ga\(^{3+ }\)and CN\(^{-}\) Inorg. Chim. Acta  479 154CrossRefGoogle Scholar
  39. 39.
    Isaad J and Perwuelz A 2010 New color chemosensors for cyanide based on water soluble azo dyes Tetrahedron Lett.  51 5810CrossRefGoogle Scholar
  40. 40.
    Jo T G, Bok K H, Han J, Lim M H and Kim C 2017 Colorimetric detection of Fe\(^{3+}\) and Fe\(^{2+}\) and sequential fluorescent detection of Al\(^{3+}\) and pyrophosphate by an imidazole-based chemosensor in a near-perfect aqueous solution Dye Pigm.  139 136Google Scholar
  41. 41.
    Maity D, Manna AK, Karthigeyan D, Kundu TK, Pati SK and Govindaraju T 2011 Visible-Near-Infrared and Fluorescent Copper Sensors Based on Julolidine Conjugates: Selective Detection and Fluorescence Imaging in Living Cells Chem. - A Eur. J.  17 11152Google Scholar
  42. 42.
    Gonzalez C, Pople J A, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman JR, Jr J A M, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N and Peters G A 2004 GAUSSIAN 03 (Revision B.02). Gaussian, Inc, Wallingford CTGoogle Scholar
  43. 43.
    Becke A D 1993 Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys.  98 5648Google Scholar
  44. 44.
    Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B  37 785CrossRefGoogle Scholar
  45. 45.
    Hariharan P C and Pople J A 1973 The influence of polarization functions on molecular orbital hydrogenation energies Theor. Chim. Acta  28 213CrossRefGoogle Scholar
  46. 46.
    Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J and Pople J A 1982 Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements J. Chem. Phys.  77 3654Google Scholar
  47. 47.
    Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg J. Chem. Phys.  82 270Google Scholar
  48. 48.
    Wadt W R and Hay P J 1985 Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi J. Chem. Phys.  82 284Google Scholar
  49. 49.
    Hay P J and Wadt W R 1985 Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals J. Chem. Phys.  82 299Google Scholar
  50. 50.
    Barone V and Cossi M 1998 Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model J. Phys. Chem. A  102 1995CrossRefGoogle Scholar
  51. 51.
    Cossi M and Barone V 2001 Time-dependent density functional theory for molecules in liquid solutions J. Chem. Phys.  115 4708CrossRefGoogle Scholar
  52. 52.
    Renny J S, Tomasevich L L, Tallmadge E H and Collum D B 2013 Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry Angew. Chem. Int. Ed.  52 11998CrossRefGoogle Scholar
  53. 53.
    Lohani C R, Kim J-M, Chung S-Y, Yoon J and Lee K H 2010 Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al\(^{3+}\) complex Analyst 135 2079Google Scholar
  54. 54.
    G. N, Guidelines for Drinking-water Quality, Geneva, 1998Google Scholar
  55. 55.
    Hildebrand J H and Benesi H A 1949 A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons J. Am. Chem. Soc.  71 2703CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Fine ChemistrySeoul National University of Science and TechnologySeoulRepublic of Korea

Personalised recommendations