Advertisement

Journal of Chemical Sciences

, 130:168 | Cite as

Computational study of n-butyronitrile in gas and condensed phases: conformational relative stability and thermal properties

  • Mohammed I Alomari
Regular Article
  • 33 Downloads

Abstract

Geometrical structures and relative stability of gauche and trans butyronitrile conformers have been investigated by utilizing ab initio and DFT calculations. The results showed that the gauche conformer is more stable by 0.27 kcal/mol, outlined as enthalpy change \(\Delta \hbox {H}\) between the two conformers, at CCSD/6-311G+(d,p), the highest level of theory used. Also, the population analysis displays that the gauche conformer is present at 70% in the gas phase, more predominant than the trans conformer. These results agree well with the previous experimental and theoretical findings. Additionally, thermodynamic properties of the two conformers have been investigated. The data exhibit that the abundance of the gauche conformer increases as the temperature decreases under high-pressure condition. The results help to understand the reasons behind the conformational transitions between the fluid and the solid phases.

Graphical Abstract

SYNOPSIS: The article investigates the geometrical structures, relative stability and thermodynamic data of gauche and trans butyronitrile conformers. The results show that the gauche conformer is more stable than the trans conformer. Also, they reveal the reasons behind the predominance of gauche conformer in the condensed phase.

Keywords

Butyronitrile conformers CCSD and DFT methods relative stability population analysis condensed phase 

Notes

Acknowledgements

The author gratefully acknowledges the support of a PC computer by Tafila Technical University (Jordan), using which all the calculations were done.

References

  1. 1.
    Barbaric S and Luisi P L 1981 Micellar solubilization of biopolymers in organic solvents. 5. Activity and conformation of alpha-chymotrypsin in isooctane-AOT reverse micelles J. Am. Chem. Soc. 103 4239CrossRefGoogle Scholar
  2. 2.
    Zhang R, Liu Y, Huang X, Xu M, Liu R and Zong W 2018 Interaction of a digestive protease, Candida rugosa lipase, with three surfactants investigated by spectroscopy, molecular docking and enzyme activity assay Sci. Total Environ. 622–623 306CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou L, Liu W, Stockmann R and Terefe N S 2018 Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree Innov. Food Sci. Emerg. Technol. 45 196CrossRefGoogle Scholar
  4. 4.
    Endo T, Kato T, Tozaki K and Nishikawa K 2010 Phase Behaviors of Room Temperature Ionic Liquid Linked with Cation Conformational Changes: 1-Butyl-3-methylimidazolium Hexafluorophosphate J. Phys. Chem. B 114 407CrossRefPubMedGoogle Scholar
  5. 5.
    Maroncelli M, Qi S P, Strauss H L and Snyder R G 1982 Nonplanar conformers and the phase behavior of solid n-alkanes J. Am. Chem. Soc. 104 6237CrossRefGoogle Scholar
  6. 6.
    Abouimrane A, Whitfield P S, Niketic S and Davidson I J 2007 Investigation of Li salt doped succinonitrile as potential solid electrolytes for lithium batteries J. Power Sources 174 883CrossRefGoogle Scholar
  7. 7.
    Alarco P-J, Abu-Lebdeh Y, Abouimrane A and Armand M 2004 The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors Nat. Mater. 3 476CrossRefPubMedGoogle Scholar
  8. 8.
    Carlucci L, Ciani G, Proserpio D M and Rizzato S 2002 Coordination networks from the self-assembly of silver salts and the linear chain dinitriles NC(CH 2) n CN (n = 2 to 7): a systematic investigation of the role of counterions and of the increasing length of the spacers CrystEngComm 4 413Google Scholar
  9. 9.
    Long S M D R and Forsyth M 2003 Fast ion conduction in molecular plastic crystals Solid State Ionics 161 105CrossRefGoogle Scholar
  10. 10.
    Wang J-Y, Wang M-C and Jan D-J 2017 Synthesis of poly(methyl methacrylate)-succinonitrile composite polymer electrolyte and its application for flexible electrochromic devices Sol. Energy Mater. Sol. Cells  160 476CrossRefGoogle Scholar
  11. 11.
    Elsila J E, Dworkin J P, Bernstein M P, Martin M P and Sandford S A 2007 Mechanisms of Amino Acid Formation in Interstellar Ice Analogs Astrophys. J.  660 911Google Scholar
  12. 12.
    Ehrenfreund P, Irvine W, Becker L, Blank J, Brucato J R, Colangeli L, Derenne S, Despois D, Dutrey A and Fraaije H 2002 Astrophysical and astrochemical insights into the origin of life Reports Prog. Phys. 65 1427CrossRefGoogle Scholar
  13. 13.
    Belloche A, Garrod R T, Muller H S P and Menten K M 2014 Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide Science 345 1584CrossRefPubMedGoogle Scholar
  14. 14.
    Hirota E 1962 Rotational Isomerism and Microwave Spectroscopy. II. The Microwave Spectrum of Butyronitrile J. Chem. Phys.  37 2918Google Scholar
  15. 15.
    Charles S W, Cullen F C and Owen N L 1976 Infrared spectra and molecular conformation of butyronitrile and methyl thioacetonitrile J. Mol. Struct. 34 219CrossRefGoogle Scholar
  16. 16.
    Crowder G A 1987 Conformational and vibrational analysis of butyronitrile J. Mol. Struct.  158 229CrossRefGoogle Scholar
  17. 17.
    Wlodarczak G, Martinache L, Demaison J, Marstok K M and Møllendal H 1988 Rotational spectrum of butyronitrile: Dipole moment, centrifugal distortion constants and energy difference between conformers J. Mol. Spectrosc. 127 178CrossRefGoogle Scholar
  18. 18.
    Durig J R, Drew B R, Koomer A and Bell S 2001 Infrared and Raman spectra, conformational stability, ab initio calculations of structure and vibrational assignment of butyronitrile Phys. Chem. Chem. Phys. 3 766CrossRefGoogle Scholar
  19. 19.
    Traetteberg M, Bakken P and Hopf H 2000 Structure and conformation of gaseous butyronitrile: C–H\(\cdots \pi \) interaction? J. Mol. Struct. 556 189CrossRefGoogle Scholar
  20. 20.
    Naganathappa M and Chaudhari A 2011 Infrared and electronic absorption spectra of n-butyronitrile and its ions using Møller Plesset method J. Mol. Model  17 1695CrossRefPubMedGoogle Scholar
  21. 21.
    Goldstein E and Allinger N L 1989 Molecular mechanics calculations (MM2) on aliphatic nitriles J. Mol. Struct. THEOCHEM  188 149CrossRefGoogle Scholar
  22. 22.
    Lamsabhi AM, Mó O, Yáñez M and Guillemin J-C 2013 Conformational preferences of RCH\(_2\)CH\(_2\)CN (R = CH\(_3\), F, Cl) cyanides and their corresponding isocyanides Struct. Chem.  24 1789CrossRefGoogle Scholar
  23. 23.
    Dai Y, Wang K, Zhou B, Du M, Liu R, Liu B and Zou B 2016 Gauche – trans Conformational Equilibrium of Succinonitrile under High Pressure J. Phys. Chem. C 120 5340CrossRefGoogle Scholar
  24. 24.
    Frisch M J et al 2010 Gaussian 09, Revision B.01Google Scholar
  25. 25.
    Alomari M I and Dawoud J N 2010 Structure and potential energy surface of K+\(\cdot \)CX2 J. Mol. Struct. THEOCHEM 939 28CrossRefGoogle Scholar
  26. 26.
    Alomari M I, Ababneh T S and Alshboul T M A 2017 Structure, vibrations and relative stability of 1-methylcyclobutene and methylenecyclobutane tautomers using DFT and CCSD methods J. Theor. Comput. Chem. 16 1750041CrossRefGoogle Scholar
  27. 27.
    Sizova O V 2006 The valence structure analysis for dirhodium(II) tetracarboxylato complexes with nitric oxide as axial ligand J. Mol. Struct. THEOCHEM 760 183CrossRefGoogle Scholar
  28. 28.
    Curtiss L A, Raghavachari K, Redfern P C and Pople J A 1997 Investigation of the use of B3LYP zero-point energies and geometries in the calculation of enthalpies of formation Chem. Phys. Lett.  270 419CrossRefGoogle Scholar
  29. 29.
    Hore S, Dinnebier R, Wen W, Hanson J and Maier J 2009 Structure of Plastic Crystalline Succinonitrile: High-Resolution in situ Powder Diffraction Z. Anorg. Allg. Chem.  635 88CrossRefGoogle Scholar
  30. 30.
    Pratik S M, Nijamudheen A and Datta A 2016 Janus all- cis-1,2,3,4,5,6-Hexafluorocyclohexane: A Molecular Motif for Aggregation-Induced Enhanced Polarization ChemPhysChem 17 2373Google Scholar
  31. 31.
    Pratik S M and Datta A 2016 Nonequimolar Mixture of Organic Acids and Bases: An Exception to the Rule of Thumb for Salt or Cocrystal J. Phys. Chem. B  120 7606CrossRefPubMedGoogle Scholar
  32. 32.
    Pratik S M, Chakraborty S, Mandal S and Datta A 2015 Cooperativity in a New Role: Stabilization of the Ammonium Salts in the Solid State over Their H-Bonded Complexes in the Gas Phase J. Phys. Chem. C 119 926CrossRefGoogle Scholar
  33. 33.
    Pratik S M and Datta A 2015 1,4-Dithiine—Puckered in the Gas Phase but Planar in Crystals: Role of Cooperativity J. Phys. Chem. C 119 15770CrossRefGoogle Scholar
  34. 34.
    Pratik S M, Nijamudheen A, Bhattacharya S and Datta A 2014 Color Polymorphism: Understanding the Diverse Solid-State Packing and Color in Dimethyl-3,6-dichloro-2,5-dihydroxyterephthalate Chem. - A Eur. J. 20 3218Google Scholar
  35. 35.
    Lemmon E W, McLinden M O, Friend and D G 2017 “Thermophysical Properties of Fluid Systems” in NIST Chemistry webbook; NIST standard reference database No. 69. In: NIST Chem. Webb. http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=4#Notes

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Faculty of Science, Department of Chemistry and Chemical TechnologyTafila Technical UniversityTafilaJordan

Personalised recommendations