Advertisement

Journal of Chemical Sciences

, 130:146 | Cite as

Photoinduced electron transfer processes of (E)-9-(4-nitrostyryl)anthracene in non-polar solvent medium: generation of long-lived charge-separated states\(^{\S }\)

  • Ayan Bhattacharyya
  • Swatilekha Pratihar
  • Edamana Prasad
Regular Article

Abstract

In the present study, photoinduced electron transfer (PET) dynamics between N,N-diethylaniline (DEA) and (E)-9-(4-nitrostyryl)anthracene (\(\hbox {An-NO}_{2}\)) in a non-polar solvent medium {methylcyclohexane (MCH)}, has been investigated. The rate constant of back electron transfer (\(\hbox {k}_{{\mathrm{BET}}}\)) for the \(\hbox {An-NO}_{2}\) – DEA pair was \(\sim 3.8\times 10^{5}~\hbox {s}^{-1}\) which is ca. 2 orders of magnitude less compared to the anthracene (An)-DEA (control) system. The results indicate that long-lived charge separated species can be generated using the design strategy used herein by achieving resonance stabilization of the excited state (acceptor) radical via conjugation.

Graphical Abstract

SYNOPSIS For N,N-diethylaniline/(E)-9-(4-nitrostyryl)anthracene donor-acceptor pair, the back electron transfer rate constant is \(\sim 2\) orders of magnitude slower compared to N,N-diethylaniline/anthracene system. The results indicate that organic molecules with extended \(\uppi \)-conjugation can be utilized for generating long-lived charge separated states via bimolecular PET, due to increased feasibility of charge delocalization.

Keywords

Photoinduced electron transfer \(\uppi \)-conjugated system back electron transfer long-lived charge-separated states 

Notes

Acknowledgements

A.B. and S.P. are grateful to the Ministry of Human Resource and Development (MHRD) and IIT Madras for fellowships. E.P. acknowledges the Solar Energy Research Initiative (SERI) of the Department of Science and Technology (DST/TM/SERI/ 2K11/115), India for financial support. The authors thank Prof. Ashok K Mishra and SAIF, IIT Madras for TCSPC facilities. All the authors also thank Department of Chemistry, IIT Madras for other instrumental facilities.

Supplementary material

12039_2018_1555_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (pdf 2784 KB)

References

  1. 1.
    Bürckstümmer H, Tulyakova E V, Deppisch M, Lenze M R, Kronenberg N M, Gsänger M, Stolte M, Meerholz K and Würthner F 2011 Efficient solution-processed bulk heterojunction solar cells by antiparallel supramolecular arrangement of dipolar donor–acceptor dyes Angew. Chem. Int. Ed. 50 11628CrossRefGoogle Scholar
  2. 2.
    Carsten B, Szarko J M, Son H J, Wang W, Lu L, He F, Rolczynski B S, Lou S J, Chen L X and Yu L 2011 Examining the effect of the dipole moment on charge separation in donor–acceptor polymers for organic photovoltaic applications J. Am. Chem. Soc. 133 20468CrossRefPubMedGoogle Scholar
  3. 3.
    Sun X, Liu Y, Xu X, Yang C, Yu G, Chen S, Zhao Z, Qiu W, Li Y and Zhu D 2005 Novel electroactive and photoactive molecular materials based on conjugated donor- acceptor structures for optoelectronic device applications J. Phys. Chem. B 109 10786CrossRefPubMedGoogle Scholar
  4. 4.
    Deibel C, Strobel T and Dyakonov V 2010 Role of the charge transfer state in organic donor–acceptor solar cells Adv. Mater. 22 4097CrossRefPubMedGoogle Scholar
  5. 5.
    Numata T, Murakami T, Kawashima F, Morone N, Heuser J E, Takano Y, Ohkubo K, Fukuzumi S, Mori Y and Imahori H 2012 Utilization of photoinduced charge-separated state of donor–acceptor-linked molecules for regulation of cell membrane potential and ion transport J. Am. Chem. Soc. 134 6092CrossRefPubMedGoogle Scholar
  6. 6.
    Higashino T, Yamada T, Yamamoto M, Furube A, Tkachenko N V, Miura T, Kobori Y, Jono R, Yamashita K and Imahori H 2016 Remarkable dependence of the final charge separation efficiency on the donor–acceptor interaction in photoinduced electron transfer Angew. Chem. Int. Ed. 55 629CrossRefGoogle Scholar
  7. 7.
    Mallia A R, Salini P and Hariharan M 2015 Nonparallel stacks of donor and acceptor chromophores evade geminate charge recombination J. Am. Chem. Soc. 137 15604CrossRefPubMedGoogle Scholar
  8. 8.
    Bard A J and Fox M A 1995 Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen Acc. Chem. Res. 28 141CrossRefGoogle Scholar
  9. 9.
    Luo C, Guldi D, Imahori H, Tamaki K and Sakata Y 2000 Sequential energy and electron transfer in an artificial reaction center: Formation of a long-lived charge-separated state J. Am. Chem. Soc. 122 6535CrossRefGoogle Scholar
  10. 10.
    Ohashi M, Aoki M, Yamanaka K I, Nakajima K, Ohsuna T, Tani T and Inagaki S 2009 A periodic mesoporous organosilica-based donor–acceptor system for photocatalytic hydrogen evolution Chem. Euro. J. 15 13041CrossRefGoogle Scholar
  11. 11.
    Alsam A A, Aly S M, Usman A, Parida M R, Del Gobbo S, Alarousu E and Mohammed O F 2015 Bimolecular excited-state electron transfer with surprisingly long-lived radical ions J. Phys. Chem. C 119 21896CrossRefGoogle Scholar
  12. 12.
    Suneesh C V and Gopidas K R 2009 Long-lived photoinduced charge separation in flexible 9, 10-bis (phenylethynyl) anthracene- phenothiazine dyads J. Phys. Chem. C 113 1606CrossRefGoogle Scholar
  13. 13.
    Rakhi A M and Gopidas K R 2015 Generation of long-lived methylviologen radical cation in the triplet-state mediated electron transfer in a \(\beta \)-cyclodextrin based supramolecular triad Chem. Phys. Lett. 618 192CrossRefGoogle Scholar
  14. 14.
    de la Escosura A, Martinez Diaz M V, Guldi D M and Torres T 2006 Stabilization of charge-separated states in phthalocyanine- fullerene ensembles through supramolecular donor–acceptor interactions J. Am. Chem. Soc. 128 4112CrossRefPubMedGoogle Scholar
  15. 15.
    Wolff C and Grätzel M 1977 Photoinduced electron transfer from chlorophyll-a to duroquinone in micellar solutions, charge separation through local electrostatic fields Chem. Phys. Lett. 52 542CrossRefGoogle Scholar
  16. 16.
    Kim Y, Das A, Zhang H and Dutta P K 2005 Zeolite membrane-based artificial photosynthetic assembly for long-lived charge separation J. Phys. Chem. B 109 6929CrossRefPubMedGoogle Scholar
  17. 17.
    Kashiwagi Y, Ohkubo K, McDonald J A, Blake I M, Crossley M J, Araki Y, Ito O, Imahori H and Fukuzumi S 2003 Long-lived charge-separated state produced by photoinduced electron transfer in a zinc imidazoporphyrin-C60 dyad Org. Lett. 5 2719CrossRefPubMedGoogle Scholar
  18. 18.
    Bhattacharyya A, Malakar P and Prasad E 2017 Long lived charge separated states in vinylbenzonitrile substituted derivatives of pyrene and anthracene J. Photochem. Photobiol. A Chem. 340 88CrossRefGoogle Scholar
  19. 19.
    Sun L and Goerner, H 1993 Excited-state properties of trans-1-(9-anthryl)-2-(4-R-phenyl) ethylenes with electron-donating and-accepting substituents [R= N (\(\text{ CH }_{3})\) 2, OCH3, \(\text{ CH }_{3}\), Br, CN, and \(\text{ NO }_{2}\)] J. Phys. Chem. 97 11186CrossRefGoogle Scholar
  20. 20.
    Aloisi G G, Elisei F, Latterini L, Passerini M and Galiazzo G 1996 (E)-9-styrylanthracene derivatives and their interactions with electron donors and acceptors. Fluorimetric and flash photolytic studies J. Chem. Soc. Faraday Trans. 92 3315CrossRefGoogle Scholar
  21. 21.
    Görner H 1999 Photoprocesses in 4-nitro-and 2, 4-dinitro-substituted trans-1-styrylnaphthalene, trans-9-styrylanthracene and related systems J. Photochem. Photobiol. A Chem. 126 15CrossRefGoogle Scholar
  22. 22.
    Görner H 2002 Photoreduction of trans-4-R-4\(\prime \)-nitrostilbenes with R: OMe, H and NO 2 by di-and trialkylamines in polar media Phys. Chem. Chem. Phys. 4 482CrossRefGoogle Scholar
  23. 23.
    Bortolus P, Galiazzo G, Gennari G and Monti S 2002 Photochemistry of (E)-1-(9-anthryl)-2-(4-nitrophenyl) ethene in the presence of aliphatic amines: H-bonding and charge-transfer effects Photochem. Photobiol. Sci. 1 412CrossRefPubMedGoogle Scholar
  24. 24.
    Paul A and Samanta A 2007 Photoinduced electron transfer reaction in room temperature ionic liquids: A combined laser flash photolysis and fluorescence study J. Phys. Chem. B 111 1957CrossRefGoogle Scholar
  25. 25.
    Okada T, Karaki I and Mataga N 1982 Picosecond laser photolysis studies of hydrogen-atom transfer reaction via heteroexcimer state in pyrene-primary and pyrene-secondary aromatic amine systems: Role of hydrogen-bonding interaction between amino group of donor and \(\uppi \) electrons of acceptor in the heteroexcimer J. Am. Chem. Soc. 104 7191CrossRefGoogle Scholar
  26. 26.
    Lakowicz J R 2006 Principles of fluorescence spectroscopy \(3^{\text{ rd }}\) edn. (New York: Springer)CrossRefGoogle Scholar
  27. 27.
    Nad S and Pal H 2000 Electron transfer from aromatic amines to excited coumarin dyes: Fluorescence quenching and picosecond transient absorption studies J. Phys. Chem. A 104 673CrossRefGoogle Scholar
  28. 28.
    Shirota H, Pal H, Tominaga K and Yoshihara K 1998 Substituent effect and deuterium isotope effect of ultrafast intermolecular electron transfer: Coumarin in electron-donating solvent J. Phys. Chem. A 102 3089CrossRefGoogle Scholar
  29. 29.
    Kavarnos G J 1993 Fundamentals of Photoinduced Electron Transfer (Berlin: VCH Publications)Google Scholar
  30. 30.
    D’Souza F, Chitta R, Ohkubo K, Tasior M, Subbaiyan N K, Zandler M E, Rogacki M K, Gryko D T and Fukuzumi S 2008 Corrole- fullerene dyads: Formation of long-lived charge-separated states in nonpolar solvents J. Am. Chem. Soc. 130 14263CrossRefPubMedGoogle Scholar
  31. 31.
    Vauthey E and Phillips D 1990 Viscosity effect on the rate of back electron transfer within a short-lived exciplex Chem. Phys. 147 421CrossRefGoogle Scholar
  32. 32.
    Bhattacharyya A, Mukherjee S, Chadha A and Prasad E 2018 Diffusion of solvent-separated ion pairs controls back electron transfer rate in graphene quantum dots J. Phys. Chem. C 122 15819CrossRefGoogle Scholar
  33. 33.
    Brandes K K and Gerdes R 1967 The influence of 1, 4-dioxane and tetrahydrofuran as solvents on the stability and the solvation of negative ions of the potassium compounds of naphthalene and anthracene J. Phys. Chem. 71 508CrossRefGoogle Scholar
  34. 34.
    Zahradnik R and Carsky P 1970 Conjugated radicals. II. Semiempirical calculations of electronic spectra of radical anions derived from alternant hydrocarbons J. Phys. Chem. 74 1240CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Ayan Bhattacharyya
    • 1
  • Swatilekha Pratihar
    • 1
  • Edamana Prasad
    • 1
  1. 1.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations