Advertisement

Journal of Chemical Sciences

, 130:135 | Cite as

Rational synthesis of a polymerizable fullerene–aniline derivative: study of photophysical, morphological and photovoltaic properties\(^{\S }\)

  • Sandeepa Kulala Vittala
  • Remya Ravi
  • Biswapriya Deb
  • Joshy Joseph
Regular Article
  • 47 Downloads

Abstract

This paper describes the synthesis of a polymerizable, aniline appended fullerene derivative, 3-aminobenzyl-phenyl-\(\hbox {C}_{61}\)-butyrate (PCBAn) and its corresponding polymer (P-PCBAn), and detailed photophysical and morphological analysis towards application as an acceptor in polymer solar cells (BHJ-PSCs). The poly-3-aminobenzyl-phenyl-\(\hbox {C}_{61}\)-butyrate (P-PCBAn), having a substituted polyaniline (PANI) skeletal structure, was synthesized via \(\hbox {FeCl}_{3}\) oxidative polymerisation of PCBA in its non-conducting leucoemaraldine state. HOMO and LUMO energies estimated using optical and electrochemical techniques revealed upshifted LUMO levels for PCBAn (\(-\)3.68 eV, \(\Delta \hbox {E} = 0.1\) eV) and P-PCBAn (\(-\)3.66 eV, \(\Delta \hbox {E} = 0.12\) eV) compared to the parental fullerene derivative, PCBM (\(-\)3.78 eV). The morphologies of PCBAn and P-PCBAn individually and in polymer blends with P3HT were investigated using AFM and TEM analysis, which showed nanoflake-like aggregates for P3HT/PCBAn and a favourable interconnected nanonetwork structure for P3HT/P-PCBAn. The wide angle X-ray scattering (WAXS) studies of PCBAn films drop-cast from THF/water (3:7) mixture and P-PCBAn films drop-cast from 1,2-dichlorobenzene exhibited plane reflections of lamellar mesophases with d-spacing of 3.4 nm and 3 nm for PCBAn and P-PCBAn, respectively. The fluorescence quenching experiments with P3HT indicated efficient electron transfer from P3HT to P-PCBAn when compared to PCBAn. The fabrication of an inverted BHJ-PSC device using PCBAn and P-PCBAn as an acceptor in combination with P3HT showed PCE of 0.9% and 1.1%, respectively, showing considerable enhancement in the case of the polymeric acceptor. The polymeric acceptor and the rational design strategy used here could open up new opportunities in the PSC device fabrication.

Graphical Abstract

Ref.: Ms. No. JCSC-D-18-001042 SYNOPSIS Synthesis of a polymerizable, aniline appended fullerene derivative, 3-aminobenzyl-phenyl-\(\hbox {C}_{61}\)-butyrate (PCBAn) and its corresponding polymer, and detailed photophysical and morphological analysis towards application as acceptor in polymer solar cells (BHJ-PSCs) are reported. The results suggest bicontinuous interpenetrating network and better charge transport properties for P3HT:P-PCBAn polymer blend compared to P3HT:PCBAn.

Keywords

Fullerene oxidative polymerisation self-assembly polymer blends nanostructures polymer solar cells 

Notes

Acknowledgements

The financial support from the Council of Scientific and Industrial Research (CSIR 12 FYP M2D-CSC-0134) and Department of Science and Technology, Government of India (Ramanujan Fellowship Grant RJN-19/2012) are gratefully acknowledged. S.K.V. and R.R. acknowledge University Grant Commission (UGC, Government of India) and CSIR respectively, for Research Fellowship.

Supplementary material

12039_2018_1547_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (pdf 1260 KB)

References

  1. 1.
    Kippelen B and Brédas J-L 2009 Organic photovoltaics Energ. Environ. Sci. 2 251CrossRefGoogle Scholar
  2. 2.
    Heremans P, Cheyns D and Rand B P 2009 Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture Acc. Chem. Res. 42 1740CrossRefGoogle Scholar
  3. 3.
    Dang M T, Hirsch L, Wantz G and Wuest J D 2013 Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system Chem. Rev. 113 3734CrossRefGoogle Scholar
  4. 4.
    Ye L, Zhang S, Ma W, Fan B, Guo X, Huang Y, Ade H and Hou J 2012 From Binary to Ternary Solvent: Morphology Fine-tuning of D/A Blends in PDPP3T-based Polymer Solar Cells Adv. Mater. 24 6335CrossRefGoogle Scholar
  5. 5.
    Zhicai H, Chengmei Z, Shijian S, Miao X, Hongbin W and Yong C 2012 Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure Nat. Photonics 6 591CrossRefGoogle Scholar
  6. 6.
    You J, Chen C-C, Hong Z, Yoshimura K, Ohya K, Xu R, Ye S, Gao J, Li G and Yang Y 2013 10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical Sub-Cells Adv. Mater. 25 3973CrossRefGoogle Scholar
  7. 7.
    Chang C Y, Wu C E, Chen S Y, Cui C, Cheng Y J, Hsu C S, Wang Y L and Li Y 2011 Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods Angew. Chem. Int. Ed. 50 9386CrossRefGoogle Scholar
  8. 8.
    Li C-Z, Yip H-L and Jen A K Y 2012 Functional fullerenes for organic photovoltaics J. Mater. Chem. 22 4161CrossRefGoogle Scholar
  9. 9.
    Kim K-H, Kang H, Nam S Y, Jung J, Kim P S, Cho C-H, Lee C, Yoon S C and Kim B J 2011 Facile Synthesis ofo-Xylenyl Fullerene Multiadducts for High Open Circuit Voltage and Efficient Polymer Solar Cells Chem. Mater. 23 5090CrossRefGoogle Scholar
  10. 10.
    Backer S A, Sivula K, Kavulak D F and Frechet J M J 2007 High efficiency organic photovoltaics incorporating a new family of soluble fullerene derivatives Chem. Mater. 19 2927CrossRefGoogle Scholar
  11. 11.
    Cheng Y-J, Liao M-H, Chang C-Y, Kao W-S, Wu C-E and Hsu C-S 2011 Di(4-methylphenyl)methano-C60Bis-Adduct for Efficient and Stable Organic Photovoltaics with Enhanced Open-Circuit Voltage Chem. Mater. 23 4056CrossRefGoogle Scholar
  12. 12.
    Mikroyannidis J A, Kabanakis A N, Sharma S S and Sharma G D 2011 A Simple and Effective Modification of PCBM for Use as an Electron Acceptor in Efficient Bulk Heterojunction Solar Cells Adv. Funct. Mater. 21 746CrossRefGoogle Scholar
  13. 13.
    Kai Y, Lie C, Fan L, Peishan W and Yiwang C 2012 Cooperative Assembly Donor–Acceptor System Induced by Intermolecular Hydrogen Bonds Leading to Oriented Nanomorphology for Optimized Photovoltaic Performance J. Phys. Chem. C 116 714CrossRefGoogle Scholar
  14. 14.
    Ying L, Jung Ah L, Qingshuo W, Stefan C B M, Alejandro L B and James J W 2012 Cooperative Assembly of Hydrogen-Bonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability Chem. Mater. 24 622CrossRefGoogle Scholar
  15. 15.
    Li C Z, Chien S C, Yip H L, Chueh C C, Chen F C, Matsuo Y, Nakamura E and Jen A K 2011 Facile synthesis of a 56pi-electron 1,2-dihydromethano-[60]PCBM and its application for thermally stable polymer solar cells Chem. Commun. 47 10082CrossRefGoogle Scholar
  16. 16.
    Lenes M, Wetzelaer G-J A H, Kooistra F B, Veenstra S C, Hummelen J C and Blom P W M 2008 Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells Adv. Mater. 20 2116CrossRefGoogle Scholar
  17. 17.
    Kim H U, Kim J H, Kang H, Grimsdale A C, Kim B J, Yoon S C and Hwang D H 2014 Naphthalene-, anthracene-, and pyrene-substituted fullerene derivatives as electron acceptors in polymer-based solar cells ACS Appl. Mater. Interfaces 6 20776CrossRefGoogle Scholar
  18. 18.
    Han G D, Collins W R, Andrew T L, Bulović V and Swager T M 2013 Cyclobutadiene–C60 Adducts: N-Type Materials for Organic Photovoltaic Cells with High VOC Adv. Funct. Mater. 23 3061CrossRefGoogle Scholar
  19. 19.
    He Y, Chen H-Y Y, Hou J and Li Y 2010 Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells J. Am. Chem. Soc. 132 1377CrossRefGoogle Scholar
  20. 20.
    He Y, Zhao G, Peng B and Li Y 2010 High-Yield Synthesis and Electrochemical and Photovoltaic Properties of Indene-C70 Bisadduct Adv. Funct. Mater. 20 3383CrossRefGoogle Scholar
  21. 21.
    Li G, Zhu R and Yang Y 2012 Polymer solar cells Nat. Photonics 6 153CrossRefGoogle Scholar
  22. 22.
    Peet J, Heeger A J and Bazan G C 2009 “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation Acc. Acc. Chem. Res. 42 1700CrossRefGoogle Scholar
  23. 23.
    Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells J. Am. Chem. Soc. 130 3619CrossRefGoogle Scholar
  24. 24.
    Babu S, Möhwald H and Nakanishi T 2010 Recent progress in morphology control of supramolecular fullerene assemblies and its applications Chem. Soc. Rev. 39 4021CrossRefGoogle Scholar
  25. 25.
    Lee J U, Jung J W, Jo J W and Jo W H 2012 Degradation and stability of polymer-based solar cells J. Mater. Chem. 22 24265CrossRefGoogle Scholar
  26. 26.
    Wantz G, Derue L, Dautel O, Rivaton A, Hudhommed P and Dagron-Lartigau C 2014 Stabilizing polymer-based bulk heterojunction solar cells via crosslinking Polym. Int. 63 1346CrossRefGoogle Scholar
  27. 27.
    Francesco G and Nazario M 2006 Fullerene Polymers: Synthesis and Properties Chem. Rev. 106 5136CrossRefGoogle Scholar
  28. 28.
    Wang J, Shen Y, Kessel S, Fernandes P, Yoshida K, Yagai S, Kurth D G, Möhwald H and Nakanishi T 2009 Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives Angew. Chem. Int. Ed. 48 2166CrossRefGoogle Scholar
  29. 29.
    Hsieh C-H H, Cheng Y-J J, Li P-J J, Chen C-H H, Dubosc M, Liang R-M M and Hsu C-S S 2010 Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer J. Am. Chem. Soc. 132 4887CrossRefGoogle Scholar
  30. 30.
    Yen-Ju C, Fong-Yi C, Wei-Cheng L, Chiu-Hsiang C and Chao-Hsiang H 2011 Self-Assembled and Cross-Linked Fullerene Interlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells Chem. Mater. 23 1512CrossRefGoogle Scholar
  31. 31.
    Martin D, Harald H, Christoph W, Helmut N, Niyazi S S, Wolfgang S, Friedrich S, Christoph T, Markus C S, Zhengguo Z and Russell G 2005 Stabilization of the nanomorphology of polymer–fullerene “bulk heterojunction” blends using a novel polymerizable fullerene derivative J. Mater. Chem. 15 5158CrossRefGoogle Scholar
  32. 32.
    Dan H, Xiaoyan D, Wei Z, Zuo X and Liming D 2013 Improving the stability of P3HT/PC61BM solar cells by a thermal crosslinker J. Mater. Chem. A 1 4589CrossRefGoogle Scholar
  33. 33.
    Lara P, Ali N, Emilie P, Christian C, Nicole A and Lionel F 2013 Fullerene-based processable polymers as plausible acceptors in photovoltaic applications J. Polym. Sci. Pol. Phys. 51 291CrossRefGoogle Scholar
  34. 34.
    Harry W G 2010 Fullerene Polymers: Synthesis, Properties and Applications J. Am. Chem. Soc. 132 9929CrossRefGoogle Scholar
  35. 35.
    Qiu H J, Wan M X, Matthews B and Dai L M 2001 Conducting polyaniline nanotubes by template-free polymerization Macromolecules 34 675CrossRefGoogle Scholar
  36. 36.
    Dai L M, Lu J P, Matthews B and Mau A W H 1998 Doping of conducting polymers by sulfonated fullerene derivatives and dendrimers J. Phys. Chem. B 102 4049CrossRefGoogle Scholar
  37. 37.
    Zhang X, Goux W J and Manohar S K 2004 Synthesis of polyaniline nanofibers by “nanofiber seeding” J. Am. Chem. Soc. 126 4502CrossRefGoogle Scholar
  38. 38.
    Huang J, Virji S, Weiller B H and Kaner R B 2003 Polyaniline nanofibers: facile synthesis and chemical sensors J. Am. Chem. Soc. 125 314CrossRefGoogle Scholar
  39. 39.
    Datta B and Schuster G B 2008 DNA-Directed Synthesis of Aniline and 4-Aminobiphenyl Oligomers: Programmed Transfer of Sequence Information to a Conjoined Polymer Nanowire J. Am. Chem. Soc. 130 2965CrossRefGoogle Scholar
  40. 40.
    Surwade S P, Agnihotra S R, Dua V, Manohar N, Jain S, Ammu S and Manohar S K 2009 Catalyst-free synthesis of oligoanilines and polyaniline nanofibers using H(2)O(2) J. Am. Chem. Soc. 131 12528CrossRefGoogle Scholar
  41. 41.
    Lu J, Dai L and Mau A W H 1998 Multi-dimensional doping of polyaniline emeraldine base by hydrogensulfated fullerenol derivatives Acta Polym. 49 371CrossRefGoogle Scholar
  42. 42.
    Wang Q G, Wang S M, Li J P and Moriyama H 2012 Synthesis and characterization of C60/polyaniline composites from interfacial polymerization J. Polym. Sci. Pol. Phys. 50 1426CrossRefGoogle Scholar
  43. 43.
    Itoi H, Hayashi S, Matsufusa H and Ohzawa Y 2017 Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors Chem. Commun. 53 3201CrossRefGoogle Scholar
  44. 44.
    Liao Y, Yu D G, Wang X, Chain W, Li X G, Hoek E M and Kaner R B 2013 Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes Nanoscale 5 3856Google Scholar
  45. 45.
    Tran H D, D’Arcy J M, Wang Y, Beltramo P J, Strong V A and Kaner R B 2011 The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures J. Mater. Chem. 21 3534CrossRefGoogle Scholar
  46. 46.
    Huang J and Kaner R B 2006 The intrinsic nanofibrillar morphology of polyaniline Chem. Commun. 4 367CrossRefGoogle Scholar
  47. 47.
    Anantharaj V, Wang L Y, Canteenwala T and Chiang L Y 1999 Synthesis of starburst hexa(oligoanilinated) C-60 using hexanitro[60]fullerene as a precursor J. Chem. Soc., Perkin Trans. 1 3357CrossRefGoogle Scholar
  48. 48.
    McClenaghan N D, Absalon C and Bassani D M 2003 Facile Synthesis of a Fullerene-Barbituric Acid Derivative and Supramolecular Catalysis of Its Photoinduced Dimerization J. Am. Chem. Soc. 125 13004CrossRefGoogle Scholar
  49. 49.
    Chang C-Y Y, Wu C-E E, Chen S-Y Y, Cui C, Cheng Y-J J, Hsu C-S S, Wang Y-L L and Li Y 2011 Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods Angew. Chem. Int. Ed. 50 9386CrossRefGoogle Scholar
  50. 50.
    Edwardson T G W, Carneiro K M M, McLaughlin C K, Serpell C J and Sleiman H F 2013 Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly Nat. Chem. 5 868CrossRefGoogle Scholar
  51. 51.
    Nakanishi T, Michinobu T, Yoshida K, Shirahata N, Ariga K, Möhwald H and Kurth D G 2008 Nanocarbon Superhydrophobic Surfaces created from Fullerene-Based Hierarchical Supramolecular Assemblies Adv. Mater. 20 443CrossRefGoogle Scholar
  52. 52.
    Nakanishi T, Ariga K, Michinobu T, Yoshida K, Takahashi H, Teranishi T, Mohwald H and D G K 2007 Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains Small 3 2019CrossRefGoogle Scholar
  53. 53.
    Park Y, Liu Z, Routh P K, Kuo C-Y, Park Y-S, Tsai H, Martinez J S, Shreve A P, Cotlet M and Wang H-L 2015 DNA-assisted photoinduced charge transfer between a cationic poly(phenylene vinylene) and a cationic fullerene Phys. Chem. Chem. Phys. 17 15675CrossRefGoogle Scholar
  54. 54.
    Jung J W, Jo J W and Jo W H 2011 Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol) Adv. Mater. 23 1782CrossRefGoogle Scholar
  55. 55.
    Wang T, Pearson A J and Lidzey D G 2013 Correlating molecular morphology with optoelectronic function in solar cells based on low band-gap copolymer:fullerene blends J. Mater. Chem. C 1 7266CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Photosciences and Photonics SectionCSIR-National Institute for Interdisciplinary Science and Technology and Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST CampusThiruvananthapuramIndia

Personalised recommendations