Advertisement

Journal of Chemical Sciences

, 130:136 | Cite as

Charge carrier dynamics in CdTe/ZnTe core/shell nanocrystals for photovoltaic applications\(^{\S }\)

  • Sourav Maiti
  • Pranav Anand
  • Farazuddin Azlan
  • Hirendra N Ghosh
Regular Article

Abstract

CdTe/ZnTe type-II core/shell nanocrystals were synthesized and characterized by the red-shift in the UV-Vis absorption and emission spectra along with the increase in both emission quantum yield and lifetime. The charge carrier dynamics was investigated through ultrafast transient absorption spectroscopy revealing the excited state carrier distribution and the dynamics through which the carriers decay. Upon laser pulse excitation the transient absorption spectrum was characterized by a broad ground state bleach signal in the core/shell nanocrystals in accord with the absorption spectra. Slower electron cooling was found in the core/shell nanocrystals compared to the CdTe core due to the type-II band-alignment that decouples the electron from hole preventing Auger-assisted electron cooling process. The recombination was found to be much slower in the core/shell nanocrystals due to the better surface passivation provided by the ZnTe shell eliminating the surface trapping process. The low band-gap CdTe based nanocrystals with a charge separated state are a viable candidate for photovoltaic applications and finally, we have investigated the potentiality of the synthesized nanocrystals as sensitizers in quantum dot solar cells.

Graphical Abstract

The charge carrier dynamics in type-II CdTe/ZnTe nanocrystals was investigated through ultrafast transient absorption spectroscopy. The core/shell nanocrystals depicted slower electron cooling as well as slower recombination process resulting in superior photovoltaic performance compared to the CdTe core.

Keywords

Ultrafast spectroscopy solar enery conversion Quasi type II core shell electron transfer 

Notes

Acknowledgements

S.M. acknowledges CSIR for a research fellowship. This work was supported by “DAE-SRC Outstanding Research Investigator Award” (Project/Scheme No.: DAE-SRC/2012/ 21/13-BRNS) granted to H.N.G.

References

  1. 1.
    Alivisatos A P 1996 Semiconductor clusters, nanocrystals, and quantum dots Science 271 933CrossRefGoogle Scholar
  2. 2.
    Bruchez M, Moronne M, Gin P, Weiss S and Alivisatos A P 1998 Semiconductor nanocrystals as fluorescent biological labels Science 281 2013CrossRefGoogle Scholar
  3. 3.
    Carey G H, Abdelhady A L, Ning Z, Thon S M, Bakr O M and Sargent E H 2015 Colloidal quantum dot solar cells Chem. Rev. 115 12732Google Scholar
  4. 4.
    Semonin O E, Luther J M and Beard M C 2012 Quantum dots for next-generation photovoltaics Mater. Today 15 508CrossRefGoogle Scholar
  5. 5.
    Talapin D V, Lee J-S, Kovalenko M V and Shevchenko E V 2009 Prospects of colloidal nanocrystals for electronic and optoelectronic applications Chem. Rev. 110 389CrossRefGoogle Scholar
  6. 6.
    Kamat P V 2013 Quantum dot solar cells. The next big thing in photovoltaics J. Phys. Chem. Lett. 4 908CrossRefGoogle Scholar
  7. 7.
    Singhal P and Ghosh H N 2018 Hot charge carrier extraction from semiconductor quantum dots J. Phys. Chem. C 122 17586CrossRefGoogle Scholar
  8. 8.
    Ghosh H N, Maiti S, Dana J and Tripathi V S 2018 Direct correlation of excitonics with efficiency in core shell quantum dot solar cell Chem. Eur. J. 24 2418CrossRefGoogle Scholar
  9. 9.
    Shojaei A F, Tabatabaeian K, Zanjanchi M A, Moafi H F and Modirpanah N 2015 Synthesis, characterization and study of catalytic activity of silver doped ZnO nanocomposite as an efficient catalyst for selective oxidation of benzyl alcohol J. Chem. Sci. 127 481CrossRefGoogle Scholar
  10. 10.
    Kandasamy K, Singh H B and Kulshreshtha S K 2009 Synthesis and characterization of CdS and CdSe nanoparticles prepared from novel intramolecularly stabilized single-source precursors J. Chem. Sci. 121 293CrossRefGoogle Scholar
  11. 11.
    Datta K K R, Srinivasan B, Balaram H and Eswaramoorthy M 2008 Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites J. Chem. Sci. 120 579CrossRefGoogle Scholar
  12. 12.
    Nasr C, Hotchandani S and Kamat P V 1995 CdSe-SnO2 coupled semiconductor thin films: Electrochemical and photoelectrochemical studies Proc. Ind. Acad. Sci. Chem. Sci. 107 691Google Scholar
  13. 13.
    Kim S, Fisher B, Eisler H-J and Bawendi M 2003 Type-II Quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures J. Am. Chem. Soc. 125 11466CrossRefGoogle Scholar
  14. 14.
    Lo S S, Mirkovic T, Chuang C-H, Burda C and Scholes G D 2011 Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures Adv. Mater. 23 180CrossRefGoogle Scholar
  15. 15.
    Maiti S, Debnath T and Ghosh H N 2016 Elucidating the electronic cross-talk dynamics across the heterointerface of Janus CdSe/PbSe nanocrystals J. Phys. Chem. C 120 29054CrossRefGoogle Scholar
  16. 16.
    Reiss P, Protière M and Li L 2009 Core/shell semiconductor nanocrystals Small 5 154CrossRefGoogle Scholar
  17. 17.
    Smith A M, Mohs A M and Nie S 2009 Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain Nat. Nanotechnol. 4 56CrossRefGoogle Scholar
  18. 18.
    Smith A M and Nie S 2010 Semiconductor nanocrystals: Structure, properties, and band gap engineering Acc. Chem. Res. 43 190CrossRefGoogle Scholar
  19. 19.
    Kaniyankandy S, Rawalekar S, Verma S and Ghosh H N 2011 Ultrafast hole transfer in CdSe/ZnTe type II core-shell nanostructure J. Phys. Chem. C 115 1428CrossRefGoogle Scholar
  20. 20.
    Yang J and Zhong X 2016 CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media J. Mat. Chem. A 4 16553CrossRefGoogle Scholar
  21. 21.
    Rawalekar S, Kaniyankandy S, Verma S and Ghosh H N 2011 Effect of surface states on charge-transfer dynamics in type II CdTe/ZnTe Core–shell quantum dots: A femtosecond transient absorption study J. Phys. Chem. C 115 12335Google Scholar
  22. 22.
    Bang J H and Kamat P V 2009 Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe ACS Nano 3 1467CrossRefGoogle Scholar
  23. 23.
    Maiti S, Debnath T, Maity P and Ghosh H N 2015 Lattice-strain-induced slow electron cooling due to quasi-type-II behavior in type-I CdTe/ZnS nanocrystals J. Phys. Chem. C 119 8410CrossRefGoogle Scholar
  24. 24.
    Yu W W, Wang Y A and Peng X 2003 Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals Chem. Mater. 15 4300CrossRefGoogle Scholar
  25. 25.
    Maiti S, Debnath T, Maity P and Ghosh H N 2016 Tuning the charge carrier dynamics via interfacial alloying in core/shell CdTe/ZnSe NCs J. Phys. Chem. C 120 1918CrossRefGoogle Scholar
  26. 26.
    Maity P, Debnath T, Chopra U and Ghosh H N 2015 Cascading electron and hole transfer dynamics in CdS/CdTe core-shell sensitized bromo-pyrogallol red (Br-PGR): Slow charge recombination in type II regime Nanoscale 7 2698Google Scholar
  27. 27.
    Debnath T, Maity P, Maiti S and Ghosh H N 2014 Electron trap to electron storage center in specially aligned Mn-doped CdSe d-Dot: A step forward in the design of higher efficient quantum-dot solar cell J. Phys. Chem. Lett. 5 2836CrossRefGoogle Scholar
  28. 28.
    Pan Z, Zhao K, Wang J, Zhang H, Feng Y and Zhong X 2013 Near infrared absorption of \(\text{ CdSe }_{{\rm x}}\text{ Te }_{{\rm 1-x}}\) alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability ACS Nano 7 5215CrossRefGoogle Scholar
  29. 29.
    Liu L and Zhong X 2012 A General and reversible phase transfer strategy enabling nucleotides modified high-quality water-soluble nanocrystals Chem. Commun. 48 5718CrossRefGoogle Scholar
  30. 30.
    Maiti S, Azlan F, Anand P, Jadhav Y, Dana J, Haram S K and Ghosh H N 2018 Boosting the efficiency of quantum dot-sensitized solar cells through formation of the cation-exchanged hole transporting layer Langmuir 34 50CrossRefGoogle Scholar
  31. 31.
    Debnath T, Parui K, Maiti S and Ghosh H N 2017 An Insight into the interface through excited-state carrier dynamics for promising enhancement of power conversion efficiency in a Mn-doped CdZnSSe gradient alloy Chem. Eur. J. 23 3755CrossRefGoogle Scholar
  32. 32.
    Maity P, Maiti S, Debnath T, Dana J, Guin S K and Ghosh H N 2016 Intraband electron cooling mediated unprecedented photocurrent conversion efficiency of \(\text{ CdS }_{{\rm x}}\text{ Se }_{{\rm 1-x}}\) alloy QDs: Direct correlation between electron cooling and efficiency J. Phys. Chem. C 120 21309CrossRefGoogle Scholar
  33. 33.
    Dana J, Maiti S, Tripathi V S and Ghosh H N 2018 Direct correlation of excitonics with efficiency in a core–shell quantum dot solar cell Chem. Eur. J. 24 2418CrossRefGoogle Scholar
  34. 34.
    Dana J, Anand P, Maiti S, Azlan F, Jadhav Y, Haram S K and Ghosh H N 2018 Inhibiting interfacial charge recombination for boosting power conversion efficiency in CdSeAu nanohybrid sensitized solar cell J. Phys. Chem. C 122 13277CrossRefGoogle Scholar
  35. 35.
    Zhang H, Wang C, Peng W, Yang C and Zhong X 2016 Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode Nano Energy 23 60CrossRefGoogle Scholar
  36. 36.
    Yu W W, Qu L, Guo W and Peng X 2003 Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals Chem. Mater. 15 2854CrossRefGoogle Scholar
  37. 37.
    Fitzmorris B C, Cooper J K, Edberg J, Gul S, Guo J and Zhang J Z 2012 Synthesis and structural, optical, and dynamic properties of core/shell/shell CdSe/ZnSe/ZnS quantum dots J. Phys. Chem. C 116 25065CrossRefGoogle Scholar
  38. 38.
    Klimov V I 2000 Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals J. Phys. Chem. B 104 6112CrossRefGoogle Scholar
  39. 39.
    Sewall S, Cooney R, Anderson K, Dias E and Kambhampati P 2006 State-to-state exciton dynamics in semiconductor quantum dots Phys. Rev. B 74 235328CrossRefGoogle Scholar
  40. 40.
    Efros A L, Kharchenko V A and Rosen M 1995 Breaking the phonon bottleneck in nanometer quantum dots: Role of Auger-like processes Solid State Commun. 93 281CrossRefGoogle Scholar
  41. 41.
    Kambhampati P 2011 Unraveling the structure and dynamics of excitons in semiconductor quantum dots Acc. Chem. Res. 44 1CrossRefGoogle Scholar
  42. 42.
    Kaniyankandy S, Rawalekar S, Verma S, Palit D K and Ghosh H N 2010 Charge carrier dynamics in thiol capped CdTe quantum dots Phys. Chem. Chem. Phys. 12 4210CrossRefGoogle Scholar
  43. 43.
    Klimov V, Mikhailovsky A, McBranch D, Leatherdale C and Bawendi M 2000 Mechanisms for intraband energy relaxation in semiconductor quantum dots: The role of electron-hole interactions Phys. Rev. B 61 R13349CrossRefGoogle Scholar
  44. 44.
    Pandey A and Guyot-Sionnest P 2008 Slow electron cooling in colloidal quantum dots Science 322 929CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Sourav Maiti
    • 1
  • Pranav Anand
    • 1
  • Farazuddin Azlan
    • 1
  • Hirendra N Ghosh
    • 1
    • 2
  1. 1.Radiation and Photochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Institute of Nano Science and TechnologyMohaliIndia

Personalised recommendations