Advertisement

Journal of Chemical Sciences

, 130:140 | Cite as

Influence of silyloxy substitution on the photochromic properties of diarylbenzo- and naphthopyrans\(^{\S }\)

  • Arindam Mukhopadhyay
  • Vijay Kumar Maka
  • Jarugu Narasimha Moorthy
Regular Article
  • 59 Downloads

Abstract

Diarylbenzopyrans and their annulated derivatives are a class of photochromic compounds, which have been extensively investigated for photochromism. In fact, some naphthopyrans are employed industrially in ophthalmic lens applications. Photoirradiation of 2,2-diphenylbenzopyran leads to the formation of colored o-quinonoid intermediates. The latter revert too rapidly to allow their observation only at low temperatures (173–263 K). Annulation and other strategies are exploited to observe the colored o-quinonoid intermediates that persist for a few minutes at room temperature. We have examined photochromism of a set of silyloxy-substituted 2,2-diphenylbenzo- and naphthopyrans to explore how the mesomeric effects transmitted by the strongly e-donating silyloxy group substituted in the ring and at phenyl groups manifest in the spectrokinetic properties of their photogenerated colored o-quinonoid intermediates. We show that silyloxy substitution in the benzopyran ring leads to remarkable stabilization of the colored intermediates to enable their persistence at 283 K for a few minutes. In contrast, similar substitution in the C2-phenyl rings destabilizes the colored intermediates.

Graphical Abstract:

Keywords

Photochromism naphthopyrans chromenes photochemistry spectrokinetics 

Notes

Acknowledgements

JNM is thankful to the Science and Engineering Research Board (SERB, Grant Number: SB/S2/JCB-52/2014), New Delhi, for financial support through the J. C. Bose fellowship. AM and VKM sincerely acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi for senior research fellowships. Mr. Debanjan Bhattacharjee is thanked for his contribution during the initial stages of the project.

Supplementary material

12039_2018_1542_MOESM1_ESM.pdf (784 kb)
Supplementary material 1 (pdf 783 KB)

References

  1. 1.
    Li Q 2013 Intelligent Stimuli-Responsive Materials: From Well-Defined Nanostructures to Applications (Hoboken: Wiley)CrossRefGoogle Scholar
  2. 2.
    Theato P, Sumerlin B S, O’Reilly R K and Epps III T H 2013 Stimuli-responsive materials Chem. Soc. Rev. 42 7055CrossRefGoogle Scholar
  3. 3.
    Dürr H and Bouas-Laurent H 2003 Photochromism: Molecules and Systems (Amsterdam: Elsevier)Google Scholar
  4. 4.
    Crano J C and Guglielmetti R J 2002 Organic photochromic and thermochromic compounds (New York: Kluwer) Vol. 1 p.111Google Scholar
  5. 5.
    Irie M 2000 Photochromism: Memories and Switches Chem. Rev. 100 1683CrossRefGoogle Scholar
  6. 6.
    Bouas-Laurent H and Dürr H 2001 Organic photochromism (IUPAC technical report) Pure Appl. Chem. 73 639CrossRefGoogle Scholar
  7. 7.
    Minkin V I 2004 Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds Chem. Rev. 104 2751CrossRefGoogle Scholar
  8. 8.
    Delbaere S, Vermeersch G and Micheau J C 2011 Quantitative analysis of the dynamic behaviour of photochromic systems J. Photochem. Photobiol. C 12 74CrossRefGoogle Scholar
  9. 9.
    Klajn R 2014 Spiropyran-based dynamic materials Chem. Soc. Rev. 43 148CrossRefGoogle Scholar
  10. 10.
    Becker R S and Michl J 1966 Photochromism of synthetic and naturally occurring 2H-chromenes and 2H-pyrans J. Am. Chem. Soc. 88 5931CrossRefGoogle Scholar
  11. 11.
    Lenoble C and Becker R S 1986 Photophysics, photochemistry and kinetics of photochromic \(2H\)-pyrans and chromenes J. Photochem. 33 187CrossRefGoogle Scholar
  12. 12.
    Becker R S and Favaro G 2011 New concepts in photochemistry and photophysics: Photochromic and other type molecules J. Photochem. Photobiol. C 12 167CrossRefGoogle Scholar
  13. 13.
    Crano J C, Flood T, Knowles D, Kumar A and Gemert B V 1996 Photochromic compounds: Chemistry and application in ophthalmic lenses Pure Appl. Chem. 68 1395CrossRefGoogle Scholar
  14. 14.
    Corns S N, Partington S M and Towns A D 2009 Industrial organic photochromic dyes Color. Technol. 125 249CrossRefGoogle Scholar
  15. 15.
    Pozzo J-L, Lokshin V, Samat A, Guglielmetti R, Dubest R and Aubard J 1998 Effect of heteroaromatic annulation with five-membered rings on the photochromism of 2H-[1]-benzopyrans J. Photochem. Photobiol. A 114 185CrossRefGoogle Scholar
  16. 16.
    Moustrou C, Rebière N, Samat A, Guglielmetti R, Yassar A E, Dubest R and Aubard J 1998 Synthesis of thiophene-substituted 3\(H\)-naphtho[2,1-\(b\)]pyrans, precursors of photomodulated materials Helv. Chim. Acta 81 1293CrossRefGoogle Scholar
  17. 17.
    Salvador M A, Coelho P J, Burrows H D, Oliveira M M and Carvalho L M 2004 Studies under continuous irradiation of photochromic spiro[fluorenopyran-thioxanthenes] Helv. Chim. Acta 87 1400CrossRefGoogle Scholar
  18. 18.
    Sousa C M, Pina J, de Melo J S, Berthet J, Delbaere S and Coelho P J 2011 Preventing the formation of the long-lived colored transoid-trans photoisomer in photochromic benzopyrans Org. Lett. 13 4040CrossRefGoogle Scholar
  19. 19.
    Frigoli M, Maurel F, Berthet J, Delbaere S, Marrot J and Oliveira M M 2012 The control of photochromism of [\(3H\)]-naphthopyran derivatives with intramolecular \(\text{ CH- }\pi \) bonds Org. Lett. 14 4150CrossRefGoogle Scholar
  20. 20.
    Sousa C M, Berthet J, Delbaere S, Polónia A and Coelho P J 2015 Fast color change with photochromic fused naphthopyrans J. Org. Chem. 80 12177CrossRefGoogle Scholar
  21. 21.
    Moorthy J N, Venkatakrishnan P, Sengupta S and Baidya M 2006 Facile synthesis, fluorescence, and photochromism of novel helical pyrones and chromenes Org. Lett. 8 4891CrossRefGoogle Scholar
  22. 22.
    Moorthy J N, Venkatakrishnan P, Samanta S and Kumar D K 2007 Photochromism of arylchromenes: remarkable modification of absorption properties and lifetimes of o-quinonoid intermediates Org. Lett. 9 919CrossRefGoogle Scholar
  23. 23.
    Moorthy J N, Koner A L, Samanta S, Roy A and Nau W M 2009 Modulation of spectrokinetic properties of \(o\)-quinonoid reactive intermediates by electronic factors: Time-resolved laser flash and steady-state photolysis investigations of photochromic 6- and 7-arylchromenes Chem. Eur. J. 15 4289CrossRefGoogle Scholar
  24. 24.
    Mukhopadhyay A, Maka V K and Moorthy J N 2016 Remarkable influence of phenyl/arylethynylation on the photo-chromism of 2,2-diphenylbenzo-pyrans (chromenes) Eur. J. Org. Chem. 2016 274Google Scholar
  25. 25.
    Mandal S, Parida K N, Samanta S and Moorthy J N 2011 Influence of (2,3,4,5,6-pentamethyl/phenyl)phenyl scaffold: Stereoelectronic control of the persistence of \(o\)-quinonoid reactive intermediates of photochromic chromenes J. Org. Chem. 76 7406CrossRefGoogle Scholar
  26. 26.
    Moorthy J N, Mandal S and Parida K N 2012 Through-space control of the persistence of photogenerated \(o\)-quinonoid intermediates in naphthalenes containing cofacially oriented chromenes and arenes Org. Lett. 14 2438CrossRefGoogle Scholar
  27. 27.
    Moorthy J N, Mandal S, Mukhopadhyay A and Samanta S 2013 Helicity as a steric force: Stabilization and helicity-dependent reversion of colored \(o\)-quinonoid intermediates of helical chromenes J. Am. Chem. Soc. 135 6872CrossRefGoogle Scholar
  28. 28.
    Mukhopadhyay A and Moorthy J N 2016 Phenomenon to functions: Photochromism of diarylpyrans, spectrokinetic properties and functional materials J. Photochem. Photobiol.  C 29 73CrossRefGoogle Scholar
  29. 29.
    Mukhopadhyay A, Maka V K, Savitha G and Moorthy J N 2018 Photochromic 2D metal-organic framework nanosheets (MONs): Design, synthesis, and functional MON-ormosil composite Chem 4 1059CrossRefGoogle Scholar
  30. 30.
    Mukhopadhyay A, Maka V K and Moorthy J N 2016 Fluoride-triggered ring-opening of photochromic diarylpyrans into merocyanine dyes: Naked-eye sensing in subppm levels J. Org. Chem. 81 7741CrossRefGoogle Scholar
  31. 31.
    Li L, Shen X, Xu Q-H and Yao S Q 2013 A switchable two-photon membrane tracer capable of imaging membrane-associated protein tyrosine phosphatase activities Angew. Chem. Int. Ed. 52 424CrossRefGoogle Scholar
  32. 32.
    Ottavi G, Favaro G and Matatesta V 1998 Spectrokinetic study of 2,2-diphenyl-5,6-benzo(2\(H\)) chromene: A thermoreversible and photoreversible photochromic system J. Photochem. Photobiol.  A 115 123CrossRefGoogle Scholar
  33. 33.
    Gorner H and Chibisov A K 2002 Photoprocesses in 2,2-diphenyl-5,6-benzo(2\(H\))chromene J. Photochem. Photobiol.  A 149 83CrossRefGoogle Scholar
  34. 34.
    Hobley J, Malatesta V, Hatanaka K, Kajimoto S, Williams S L and Fukumura H 2002 Picosecond and nanosecond photo-dynamics of a naphthopyran merocyanine Phys. Chem. Chem. Phys. 4 180CrossRefGoogle Scholar
  35. 35.
    Evans R A, Hanley T L, Skidmore M A, Davis T P, Such G K, Yee L H, Ball G E and Lewis D A 2005 The generic enhancement of photochromic dye switching speeds in a rigid polymer matrix Nat. Mater. 4 249CrossRefGoogle Scholar
  36. 36.
    Malic N, Campbell J A and Evans R A 2008 Superior photochromic performance of naphthopyrans in a rigid host matrix using polymer conjugation: Fast, dark, and tunable Fast, dark, and tunable Macromolecules 41 1206CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyKanpurIndia

Personalised recommendations