Advertisement

Journal of Chemical Sciences

, 130:137 | Cite as

Viable access to the triplet excited state in peryleneimide based palladium complex\(^{\S }\)

  • Abbey M Philip
  • Ebin Sebastian
  • Gopika Gopan
  • Remya Ramakrishnan
  • Mahesh Hariharan
Regular Article
  • 104 Downloads

Abstract

Triplet excited state in organic chromophores is ubiquitously significant owing to its utility in light harvesting and photovoltaic device applications. Herein, we report the enhancement in the triplet character of an innately triplet deficient peryleneimide chromophore via incorporation of a heavy atom. Palladium incorporated perylenemonoimide (PMI-Pd) was synthesized via oxidative addition of PMI-Br into Pd(0) under inert experimental conditions. The structural sanctity of the PMI-Pd and the model derivative PMI was characterized via single crystal X-ray diffraction and the close-packing was examined employing Hirshfeld surface analysis. The steady-state spectroscopic measurements of PMI-Pd in chloroform reveal an apparent perturbation in the UV-Vis absorption, fluorescence emission and lifetime characteristics. A much higher perturbation is observed in the ultrafast photoexcited processes of PMI-Pd in chloroform as envisaged via nanosecond transient absorption (nTA) measurements. The nTA measurements of PMI-Pd in chloroform reveal a significant enhancement in the triplet character of PMI-Pd as compared to the model derivative PMI. Spin-orbit coupling (SOC) mediated triplet enhancement in PMI-Pd suggest heavy atom incorporation as a viable route for accessing the triplet excited states in triplet deficient aromatic chromophores. SOC mediated triplet enhancement in innately triplet deficient organic chromophores can revive the utility of these materials for novel photovoltaic and energy storage applications.

Graphical abstract

SYNOPSIS Synthesis and characterization of a perylenemonoimide palladium(II) complex (PMI-Pd) and the enhancement in the triplet excited state of PMI-Pd as compared to PMI are explored. The results suggest that the combined spin-orbit coupling mediated by the incorporation of palladium and bromine atoms results in the enhancement of the triplet character in PMI-Pd.

Keywords

Perylenemonoimide palladium complex triplet spin-orbit coupling 

Notes

Acknowledgements

M. H. acknowledges Kerala State Council for Science, Technology and Environment (KSCSTE) for the support of this work, 007/KSYSA-RG/2014/KSCSTE. The authors thank A. P. Andrews, IISER-TVM for the single crystal X-ray structure analyses. A.M.P., G.G., E.S. & R.R. thank IISER-TVM, and Department of Science and Technology (DST) INSPIRE, University Grant Commission (UGC) fellowships for the financial assistance.

Supplementary material

12039_2018_1537_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (pdf 1453 KB)

References

  1. 1.
    Lentijo S, Miguel J A and Espinet P 2010 Highly Fluorescent Platinum(II) Organometallic Complexes of Perylene and Perylene Monoimide, with Pt \(\upsigma \)-Bonded Directly to the Perylene Core Inorg. Chem. 49 9169CrossRefGoogle Scholar
  2. 2.
    Langhals H 1995 Cyclic Carboxylic Imide Structures as Structure Elements of High Stability. Novel Developments in Perylene Dye Chemistry Heterocycles 40 477CrossRefGoogle Scholar
  3. 3.
    Zhan X, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R and Marder S R 2011 Rylene and Related Diimides for Organic Electronics Adv. Mater. 23 268CrossRefGoogle Scholar
  4. 4.
    Gao X and Hu Y 2014 Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design J. Mater. Chem. C 2 3099CrossRefGoogle Scholar
  5. 5.
    Chen L and Henrike W 2012 Perylene Imides for Organic Photovoltaics: Yesterday, Today, and Tomorrow Adv. Mater. 24 613CrossRefGoogle Scholar
  6. 6.
    Kelley R F, Shin W S, Rybtchinski B, Sinks L E and Wasielewski M R 2007 Photoinitiated Charge Transport in Supramolecular Assemblies of a 1,7,N,N’-Tetrakis(zinc porphyrin)-perylene-3,4:9,10-bis(dicarboximide) J. Am. Chem. Soc. 129 3173CrossRefGoogle Scholar
  7. 7.
    Bullock J E, Carmieli R, Mickley S M, Vura-Weis J and Wasielewski M R 2009 Photoinitiated Charge Transport through \(\uppi \)-Stacked Electron Conduits in Supramolecular Ordered Assemblies of Donor-Acceptor Triads J. Am. Chem. Soc. 131 11919CrossRefGoogle Scholar
  8. 8.
    Prodi A, Chiorboli C, Scandola F, Iengo E, Alessio E, Dobrawa R and Würthner F 2005 Wavelength-Dependent Electron and Energy Transfer Pathways in a Side-to-Face Ruthenium Porphyrin/Perylene Bisimide Assembly J. Am. Chem. Soc. 127 1454CrossRefGoogle Scholar
  9. 9.
    Rajaram S, Shivanna R, Kandappa S K and Narayan K S 2012 Nonplanar Perylene Diimides as Potential Alternatives to Fullerenes in Organic Solar Cells J. Phys. Chem. Lett. 3 2405CrossRefGoogle Scholar
  10. 10.
    Nielsen C B, Holliday S, Chen H-Y, Cryer S J and McCulloch I 2015 Non-Fullerene Electron Acceptors for Use in Organic Solar Cells Acc. Chem. Res. 48 2803CrossRefGoogle Scholar
  11. 11.
    Sharma P, Damien D, Nagarajan K, Shaijumon M M and Hariharan M 2013 Perylene-polyimide-Based Organic Electrode Materials for Rechargeable Lithium Batteries J. Phys. Chem. Lett. 4 3192CrossRefGoogle Scholar
  12. 12.
    Banda H, Damien D, Nagarajan K, Hariharan M and Shaijumon M M 2015 A polyimide based all-organic sodium ion battery J. Mater. Chem. A 3 10453CrossRefGoogle Scholar
  13. 13.
    Banda H, Damien D, Nagarajan K, Hariharan M and Shaijumon M M 2017 Sodium-Ion Batteries: Twisted Perylene Diimides with Tunable Redox Properties for Organic Sodium-Ion Batteries (Adv. Energy Mater. 20/2017) Adv. Energy Mater. 7.  https://doi.org/10.1002/aenm.201770112
  14. 14.
    Nagarajan K, Mallia A R, Reddy V S and Hariharan M 2016 Access to Triplet Excited State in Core-Twisted Perylenediimide J. Phys. Chem. C 120 8443CrossRefGoogle Scholar
  15. 15.
    Zhihua X and Bin H 2008 Photovoltaic Processes of Singlet and Triplet Excited States in Organic Solar Cells Adv. Funct. Mater. 18 2611CrossRefGoogle Scholar
  16. 16.
    Rao A, Chow P C Y, Gélinas S, Schlenker C W, Li C-Z, Yip H-L, Jen A K Y, Ginger D S and Friend R H 2013 The role of spin in the kinetic control of recombination in organic photovoltaics Nature 500 435CrossRefGoogle Scholar
  17. 17.
    Ford W E and Kamat P V 1987 Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes. 3. Singlet and triplet excited-state properties of the bis(2,5-di-tert-butylphenyl)imide derivative J. Phys. Chem. 91 6373CrossRefGoogle Scholar
  18. 18.
    Tilley A J, Pensack R D, Lee T S, Djukic B, Scholes G D and Seferos D S 2014 Ultrafast Triplet Formation in Thionated Perylene Diimides J. Phys. Chem. C 118 9996CrossRefGoogle Scholar
  19. 19.
    Vagnini M T, Smeigh A L, Blakemore J D, Eaton S W, Schley N D, D’Souza F, Crabtree R H, Brudvig G W, Co D T and Wasielewski M R 2012 Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives Proc. Natl. Acad. Sci. U. S. A. 109 15651CrossRefGoogle Scholar
  20. 20.
    Rachford A A, Goeb S and Castellano F N 2008 Accessing the Triplet Excited State in Perylenediimides J. Am. Chem. Soc. 130 2766CrossRefGoogle Scholar
  21. 21.
    Marcus S, Andreas S and Frank W 2015 Near-IR Phosphorescent Ruthenium(II) and Iridium(III) Perylene Bisimide Metal Complexes Angew. Chem. 127 1590CrossRefGoogle Scholar
  22. 22.
    Smith M B and Michl J 2010 Singlet Fission Chem. Rev. 110 6891CrossRefGoogle Scholar
  23. 23.
    Eaton S W, Shoer L E, Karlen S D, Dyar S M, Margulies E A, Veldkamp B S, Ramanan C, Hartzler D A, Savikhin S, Marks T J and Wasielewski M R 2013 Singlet Exciton Fission in Polycrystalline Thin Films of a Slip-Stacked Perylenediimide J. Am. Chem. Soc. 135 14701CrossRefGoogle Scholar
  24. 24.
    Mallia A R, Salini P S and Hariharan M 2015 Nonparallel Stacks of Donor and Acceptor Chromophores Evade Geminate Charge Recombination J. Am. Chem. Soc. 137 15604CrossRefGoogle Scholar
  25. 25.
    Cheriya R T, Mallia A R and Hariharan M 2014 Light Harvesting Vesicular Donor-Acceptor Scaffold Limits the Rate of Charge Recombination in the Presence of an Electron Donor Energy Environ. Sci. 7 1661CrossRefGoogle Scholar
  26. 26.
    Dance Z E X, Mickley S M, Wilson T M, Ricks A B, Scott A M, Ratner M A and Wasielewski M R 2008 Intersystem Crossing Mediated by Photoinduced Intramolecular Charge Transfer: Julolidine-Anthracene Molecules with Perpendicular \(\uppi \) Systems J. Phys. Chem. A 112 4194CrossRefGoogle Scholar
  27. 27.
    Cheriya R T, Nagarajan K and Hariharan M 2013 Single-Component Organic Light-Harvesting Red Luminescent Crystal J. Phys. Chem. C 117 3240CrossRefGoogle Scholar
  28. 28.
    Rajagopal S K, Philip A M, Nagarajan K and Hariharan M 2014 Progressive Acylation of Pyrene Engineers Solid State Packing and Colour via Open image in new window and \(\pi \text{-}\pi \) Interactions Chem. Commun. 50 8644CrossRefGoogle Scholar
  29. 29.
    Nagarajan K, Gopan G, Cheriya R T and Hariharan M 2017 Long alkyl side-chains impede exciton interaction in organic light harvesting crystals Chem. Commun. 53 7409CrossRefGoogle Scholar
  30. 30.
    Philip A M, Mallia A R and Hariharan M 2016 Prolonged Charge Separated States in Twisted Stacks of All-Carbon Donor and Acceptor Chromophores J. Phys. Chem. Lett. 7 4751CrossRefGoogle Scholar
  31. 31.
    Mallia A R, Philip A M, Bhat V and Hariharan M 2017 Persistent Charge-Separated States in Self-Assembled Twisted Nonsymmetric Donor–Acceptor Triads J. Phys. Chem. C 121 4765CrossRefGoogle Scholar
  32. 32.
    Philip A M, Kuriakose F and Hariharan M 2017 Unsolicited Photoexcited-State Pathways Relegate the Long-Lived Charge Separation in Self-Assembled Nucleobase–Arene Conjugate J. Phys. Chem. C 121 23259CrossRefGoogle Scholar
  33. 33.
    Nagarajan K, Mallia A R, Muraleedharan K and Hariharan M 2017 Enhanced intersystem crossing in core-twisted aromatics Chem. Sci. 8 1776CrossRefGoogle Scholar
  34. 34.
    Lakowicz J R 2007 In Principles of Fluorescence Spectroscopy (Springer: NY, USA) p. 54Google Scholar
  35. 35.
    Sheldrick G 2008 A Short History of SHELX Acta Cryst. A 64 112CrossRefGoogle Scholar
  36. 36.
    Farrugia L 1999 WinGX Suite for Small-Molecule Single-Crystal Crystallography J. Appl. Cryst. 32 837CrossRefGoogle Scholar
  37. 37.
    Macrae C F, Bruno I J, Chisholm J A, Edgington P R, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J and Wood P A 2008 Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures J. Appl. Cryst. 41 466CrossRefGoogle Scholar
  38. 38.
    Bruno I J, Cole J C, Edgington P R, Kessler M, Macrae C F, McCabe P, Pearson J and Taylor R 2002 New Software for Searching the Cambridge Structural Database and Visualizing Crystal Structures Acta Cryst. B 58 389CrossRefGoogle Scholar
  39. 39.
    Wu Y-L, Brown K E and Wasielewski M R 2013 Extending Photoinduced Charge Separation Lifetimes by Using Supramolecular Design: Guanine–Perylenediimide G-Quadruplex J. Am. Chem. Soc. 135 13322CrossRefGoogle Scholar
  40. 40.
    Rajagopal S K, Mallia A R and Hariharan M 2017 Enhanced intersystem crossing in carbonylpyrenes Phys. Chem. Chem. Phys. 19 28225CrossRefGoogle Scholar
  41. 41.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J, Brothers E N, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J, Gaussian 09 Rev. A.02, Gaussian, Inc., Wallingford CT, USA, 2009Google Scholar
  42. 42.
    Spackman M A and Jayatilaka D 2009 Hirshfeld Surface Analysis CrystEngComm 11 19CrossRefGoogle Scholar
  43. 43.
    Wolff S K, Grimwood D J, McKinnon J J, Turner M J, Jayatilaka D and Spackman M A 2012 CrystalExplorer (Version 3.1), University of Western AustraliaGoogle Scholar
  44. 44.
    Cheriya R T, Joy J, Alex A P, Shaji A and Hariharan M 2012 Energy Transfer in Near-Orthogonally Arranged Chromophores Separated through a Single Bond J. Phys. Chem. C 116 12489CrossRefGoogle Scholar
  45. 45.
    Bullock J E, Vagnini M T, Ramanan C, Co D T, Wilson T M, Dicke J W, Marks T J and Wasielewski M R 2010 Photophysics and Redox Properties of Rylene Imide and Diimide Dyes Alkylated Ortho to the Imide Groups J. Phys. Chem. B 114 1794CrossRefGoogle Scholar
  46. 46.
    Weissman H, Shirman E, Ben-Moshe T, Cohen R, Leitus G, Shimon L J W and Rybtchinski B 2007 Palladium Complexes of Perylene Diimides: Strong Fluorescence Despite Direct Attachment of Late Transition Metals to Organic Dyes Inorg. Chem. 46 4790CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)ThiruvananthapuramIndia

Personalised recommendations