Advertisement

Journal of Chemical Sciences

, 130:125 | Cite as

Silica-coated iron-oxide nanoparticles doped with Gd(III) complexes as potential double contrast agents for magnetic resonance imaging at different field strengths

  • Alexey Stepanov
  • Svetlana Fedorenko
  • Rustem Amirov
  • Irek Nizameev
  • Kirill Kholin
  • Alexandra Voloshina
  • Anastasiya Sapunova
  • Rafael Mendes
  • Mark Rümmeli
  • Thomas Gemming
  • Asiya Mustafina
  • Boris Odintsov
Regular Article
  • 109 Downloads

Abstract

In the present work, we have prepared the \(\sim \)10 nm superparamagnetic iron-oxide nanoparticles by means of high-temperature decomposition of iron oleate precursor. Then they were coated with silica shell to impart water-solubility and an ability to accommodate paramagnetic Gd(III)-based complexes inside silica coating. All of the prepared nanoparticles form stable in time aqueous dispersions and show good negative or/and positive contrasting effect at different magnetic field strengths (0.47, 1.41, 14.1 T). It has been also exemplified that the incorporation of [Gd(TCAS)] complexes into silica shell triggers a significant increase of the transverse relaxivity of the core–shell nanoparticles. The correlation between relaxometric properties and morphology of the obtained nanoparticles was revealed. The non-toxicity of the obtained nanoparticles along with their ability to shorten both transverse and longitudinal relaxation rates of water protons make them good candidates for their use as dual-mode contrast agents in MRI.

Graphical Abstract

Keywords

Double contrast agents silica nanoparticles longitudinal relaxivity transverse relaxivity 

Notes

Supplementary material

12039_2018_1527_MOESM1_ESM.pdf (288 kb)
Supplementary material 1 (pdf 287 KB)

References

  1. 1.
    Corti M, Lascialfari A, Marinone M, Masotti A, Micotti E, Orsini F, Ortaggi G, Poletti G, Innocenti C and Sangregorio C 2008 Magnetic and relaxometric properties of polyethyleneimine-coated superparamagnetic MRI contrast agents J. Magn. Magn. Mater. 320 e316CrossRefGoogle Scholar
  2. 2.
    Jedlovszky-Hajdu A, Tombacz E, Banyai I, Babos M and Palko A 2012 Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths J. Magn. Magn. Mater. 234 3173CrossRefGoogle Scholar
  3. 3.
    Zhang F, Huang X, Qian C, Zhu L, Hida N, Niu G and Chen X 2012 Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI Biochem. Biophys. Res. Commun. 425 886CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Choi Jin-sil, Lee J-H, Shin T-H, Song H-T, Yeop Kim E and Cheon J 2010 Self-confirming “AND” Logic Nanoparticles for Fault-Free MRI J. Am. Chem. Soc. 132 11015CrossRefGoogle Scholar
  5. 5.
    Caravan P 2006 Strategies for increasing the sensitivity of gadolinium based MRI contrast agents Chem. Soc. Rev. 35 512CrossRefPubMedGoogle Scholar
  6. 6.
    Shin T-H, Choi Jin-sil, Yun S, Kim I-S, Song H-T, Kim Y, Park K I and Cheon J 2014 \(\text{ T }_{1}\) and \(\text{ T }_{2}\) Dual-Mode MRI Contrast Agent for Enhancing Accuracy by Engineered Nanomaterials ACS Nano 8 3393CrossRefPubMedGoogle Scholar
  7. 7.
    Szpak A, Fiejsasz S, Prentoda W, Straczek T, Kapusta C, Szmyd J, Nowakowska M and Zapotoczny S 2014 \(\text{ T }_{1}-\text{ T }_{2}\) Dual-mode MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes J. Nanopart. Res. 16 2678CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yang M, Gao L, Liu K, Luo C, Wang Y, Yu L, Peng H and Zhang W 2015 Characterization of \(\text{ Fe }_{3}\text{ O }_{4}\)/\(\text{ SiO }_{2}\)/\(\text{ Gd }_{2}\text{ O }(\text{ CO }_{3})_{2}\) core/shell/shell nanoparticles as T1 and T2 dual mode MRI contrast agents Talanta 131 661CrossRefPubMedGoogle Scholar
  9. 9.
    Cai H, An X, Wen S, Li J, Zhang G, Shi X and Shen M 2015 Facile Synthesis of Gd(OH)\(_{3}\) -Doped \(\text{ Fe }_{3}\text{ O }_{4}\) Nanoparticles for Dual-Mode \(\text{ T }_{1}\)- and \(\text{ T }_{2}\) -Weighted Magnetic Resonance Imaging Applications Part. Part. Syst. Charact. 32 934CrossRefGoogle Scholar
  10. 10.
    Xiao N, Gu W, Wang H, Deng Y, Shi X and Ye L 2014 \(\text{ T }_{1}-\text{ T }_{2}\) dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles J. Colloid Interface Sci. 417 159CrossRefPubMedGoogle Scholar
  11. 11.
    Keasberry N, Banobre-Lopez M, Wood C, Stasiuk J, Gallo J and Long N 2015 Tuning the relaxation rates of dual \(\text{ T }_{1}\)/\(\text{ T }_{2}\) nanoparticle contrast agents: a study into the ideal system Nanoscale 7 16119CrossRefPubMedGoogle Scholar
  12. 12.
    Bronstein L, Huang X, Retrum J, Schmucker A, Pink M, Stein B and Dragnea B 2007 Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation Chem. Mater. 19 3624CrossRefGoogle Scholar
  13. 13.
    Iki N, Fujimoto T and Miyano S 1998 A New Water-Soluble Host Molecule Derived from Thiacalixarene Chem. Lett. 27 625CrossRefGoogle Scholar
  14. 14.
    Stepanov A, Mustafina A, Mendes R, Rümmeli M, Gemming T, Popova E, Nizameev I and Kadirov M 2016 Impact of heating mode in synthesis of monodisperse iron oxide nanoparticles via oleate decomposition J. Iran Chem. Soc. 13 299CrossRefGoogle Scholar
  15. 15.
    Meiboom S and Gill D 1958 Modified spin-echo method for measuring nuclear relaxation times Rev. Sci. Instrum. 29 688CrossRefGoogle Scholar
  16. 16.
    Henoumont C, Laurent S and Elst L Vander 2009 How to perform accurate and reliable measurements of longitudinal and transverse relaxation times of MRI contrast media in aqueous solutions Contrast Media Mol. Imaging 4 312CrossRefPubMedGoogle Scholar
  17. 17.
    Odintsov B 2011 Tunable radio-frequency coil U.S. Patent 8,049,502 B2; November 1Google Scholar
  18. 18.
    Voloshina A, Semenov V, Strobykina A, Kulik N, Krylova E, Zobov V and Reznik V 2017 Synthesis and Antimicrobial and Toxic Properties of Novel 1,3-Bis(alkyl)-6-Methyluracil Derivatives Containing 1,2,3- and 1,2,4-Triazolium Fragments Russ. J. Bioorg. Chem. 43 170CrossRefGoogle Scholar
  19. 19.
    Stepanov A, Burilov V, Pinus M, Mustafina A, Rümmeli H, Mendes R, Amirov R, Lukashenko S, Zvereva E, Katsuba S, Elistratova J, Nizameev I, Kadirov M and Zairov R 2014 Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating Colloids Surf., A 443 450CrossRefGoogle Scholar
  20. 20.
    Nadeem K, Ali L, Gul I, Rizwan S and Mumtaz A 2014 Effect of silica coating on the structural, dielectric, and magnetic properties of maghemite nanoparticles J. Non-Cryst. Solids 404 72CrossRefGoogle Scholar
  21. 21.
    Fedorenko S, Grechkina S, Mustafina A, Kholin K, Stepanov A, Nizameev I, Ismaev I, Kadirov M, Zairov R, Fattakhova A, Amirov R and Soloveva S 2017 Tuning the non-covalent confinement of Gd(III) complexes in silica nanoparticles for high \(\text{ T }_{1}\)-weighted MR imaging capability Colloids Surf., B 149 243CrossRefGoogle Scholar
  22. 22.
    Chen F, Bu W, Chen Y, Fan Y, He Q, Zhu M, Lui X, Zhou L, Zhang S, Peng W and Shi J 2009 A Sub-50-nm Monosized Superparamagnetic \(\text{ Fe }_{3}\text{ O }_{4}@\text{ SiO }_{2}\,\text{ T }_{2}\)-Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core–Shell Nanostructures Chem. Asian J. 4 1809CrossRefPubMedGoogle Scholar
  23. 23.
    Nadeem K, Ali L, Gul I, Rizwan S and Mumtaz A 2014 Effect of silica coating on the structural, dielectric, and magnetic properties of maghemite nanoparticles J. Non-Cryst. Solids 404 72CrossRefGoogle Scholar
  24. 24.
    Amirov R, McMillan Z, Mustafina A, Chukurova I, Solovieva S, Antipin I and Konovalov A 2005 A first report on ternary complex formation between p-sulfonatothiacalix[4]arene, tetramethylammonium ion and gadolinium (III) ion in aqueous solutions Inorg. Chem. Commun. 8 821CrossRefGoogle Scholar
  25. 25.
    Rohrer M, Bauer H, Mintorovitch J, Requardt M and Weinmann H-J 2005 Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths Invest. Radiol. 40 715CrossRefPubMedGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Alexey Stepanov
    • 1
  • Svetlana Fedorenko
    • 1
  • Rustem Amirov
    • 2
  • Irek Nizameev
    • 3
  • Kirill Kholin
    • 1
  • Alexandra Voloshina
    • 1
  • Anastasiya Sapunova
    • 1
  • Rafael Mendes
    • 6
  • Mark Rümmeli
    • 4
    • 5
    • 6
  • Thomas Gemming
    • 6
  • Asiya Mustafina
    • 1
  • Boris Odintsov
    • 7
    • 8
  1. 1.Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center of RASKazanRussia
  2. 2.Kazan (Volga region) Federal UniversityKazanRussia
  3. 3.Kazan National Research Technological UniversityKazanRussia
  4. 4.Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology & Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhouChina
  5. 5.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland
  6. 6.IFW DresdenDresdenGermany
  7. 7.Biomedical Imaging Center of the Beckman Institute for Advanced Science and TechnologyUniversity of IllinoisUrbana-ChampaignUSA
  8. 8.Department of BioengineeringUniversity of IllinoisUrbana-ChampaignUSA

Personalised recommendations