Advertisement

Cobalt based functional inorganic materials: Electrocatalytic water oxidation

  • Olivia Basu
  • Subhabrata Mukhopadhyay
  • Samar K Das
Perspective Article

Abstract

Water splitting is considered to be one of the most promising sources of sustainable energy, as it can produce hydrogen (\(\hbox {H}_{2}\)) fuel. To have successful water splitting in a sustained manner, it is necessary to develop efficient and robust catalysts that can perform water oxidation, the bottleneck process of water splitting either electrochemically or photochemically. Here, we have presented a brief descriptive analysis of different aspects of designing such catalysts in connection with our recent works on the same field. The focus of the article is to discuss contemporary works in the field of designing cobalt-based heterogeneous water oxidation electrocatalysts. To the best of our knowledge, although cobalt is the most extensively studied 1st row transition metal for water oxidation catalysis reaction, no such report has been found where the simplest cobalt complex, [\(\hbox {Co(H}_{2}\hbox {O})_{6}]^{2+}\), has been employed as a water oxidation catalyst. Not only that, reports of cobalt-based simple and small molecular catalysts are also not very frequent. With the help of our recent works, we have tried to detail here a wide aspect of the study on cobalt-based simple and small molecular catalysts, starting from the reasons behind the scarcity of such water oxidation catalysts, to development of new ideas addressing the challenges in utilization of such small cobalt complexes for water oxidation catalyst. Here, we have addressed the scope of encapsulation chemistry in designing robust and efficient heterogeneous water oxidation catalysts using cobalt-based small molecular guest species. With the help of structural insight, gained from the recent results, we published in the field of water oxidation catalysis; here, we try to formulate a general approach that can help to prepare water oxidation catalyst based on host-guest chemistry. The article critically evaluates our recent results in connection with the approach of addressing the problem.

Graphical Abstract

SYNOPSIS An efficient electrocatalytic water oxidation can be achieved by cobalt(II)-based functional materials that comprise of a mononuclear Co(II)-aqua coordination complex [\(\hbox {Co}(\hbox {H}_{2}\hbox {O})_{4}\hbox {(DMF)}_{2}]^{2+}\), included in the confined space of a metal organic framework (MOF) material, zeolite-Y-supported \(\upalpha \)-\(\hbox {Co(OH)}_{2}\) nano-film and ZIF-8 MOF-encapsulated cobalt(II)-centred Keggin-type polyoxometalate. The relevant kinetic analyses have been discussed in details.

Keywords

MOF encapsulation cobalt mononuclear aqua complex zeolite-Y \(\upalpha \)-\(\hbox {Co(OH)}_{2}\) nano-film ZIF-8 cobalt-centred Keggin POM electrocatalyst water oxidation kinetic analysis 

Notes

Acknowledgements

We thank SERB, Department of Science and Technology, Government of India, for financial support (Project No. EMR/2017/002971). We acknowledge support by UGS-CAS, DST-PURSE and DST-FIST schemes. OB and SM thank UGC and DST INSPIRE for their fellowships. We are grateful to MTIC 2017 organizing committee for this invitation.

Supplementary material

12039_2018_1494_MOESM1_ESM.pdf (463 kb)
Supplementary material 1 (pdf 462 KB)

References

  1. 1.
    Blakemore J D, Crabtree R H and Brudvig G W 2015 Molecular catalysts for water oxidation Chem. Rev. 115 12974CrossRefGoogle Scholar
  2. 2.
    Vinyard D J, Ananyev G M and Dismukes G C 2013 Photosystem II: the reaction center of oxygenic photosynthesis Annu. Rev. Biochem. 82 577CrossRefGoogle Scholar
  3. 3.
    Lewis N S and Nocera D G 2006 Powering the planet: chemical challenges in solar energy utilization Proc. Natl. Acad. Sci. USA 103 15729CrossRefGoogle Scholar
  4. 4.
    Kanan M W and Nocera D G 2008 In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and \(\text{Co}^{2+}\) Science 321 1072CrossRefGoogle Scholar
  5. 5.
    Hunter B M, Gray H B and Müller A M 2016 Earth-abundant heterogeneous water oxidation catalysts Chem. Rev. 116 14120CrossRefGoogle Scholar
  6. 6.
    Schmidt-Rohr K 2015 Why combustions are always exothermic, yielding about 418 kJ per mole of \(\text{O}_{2}\) J. Chem. Educ. 92 2094CrossRefGoogle Scholar
  7. 7.
    Symes M D, Surendranath Y, Lutterman D A and Nocera D G 2011 Bidirectional and unidirectional PCET in a molecular model of a cobalt-based oxygen-evolving catalyst J. Am. Chem. Soc. 133 5174CrossRefGoogle Scholar
  8. 8.
    Surendranath Y, Kanan M W and Nocera D G 2010 Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH J. Am. Chem. Soc. 132 16501CrossRefGoogle Scholar
  9. 9.
    Fukuzumi S and Hong D 2014 Homogeneous versus heterogeneous catalysts in water oxidation Eur. J. Inorg. Chem. 2014 645CrossRefGoogle Scholar
  10. 10.
    Diaz-Morales O, Calle-Vallejo F, de Munck C and Koper M T M 2013 Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism Chem. Sci. 4 2334CrossRefGoogle Scholar
  11. 11.
    Minguzzi A, Lugaresi O, Achilli E, Locatelli C, Vertova A, Ghigna P and Rondinini S 2014 Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts Chem. Sci. 5 3591CrossRefGoogle Scholar
  12. 12.
    Matheu R, Francàs L, Chernev P, Ertem M Z, Batista V, Haumann M, Sala X and Llobet A 2015 Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes ACS Catal. 5 3422CrossRefGoogle Scholar
  13. 13.
    Sheehan S W, Thomsen J M, Hintermair U, Crabtree R H, Brudvig G W and Schmuttenmaer C A 2015 A molecular catalyst for water oxidation that binds to metal oxide surfaces Nat. Commun. 6 6469CrossRefGoogle Scholar
  14. 14.
    Abe T, Nagai K, Kabutomori S, Kaneko M, Tajiri A and Norimatsu T 2006 An organic photoelectrode working in the water phase: visible-light-induced dioxygen evolution by a perylene derivative/cobalt phthalocyanine bilayer Angew. Chem. Int. Ed. Engl. 45 2778CrossRefGoogle Scholar
  15. 15.
    Dogutan D K, McGuire R and Nocera D G 2011 Electocatalytic water oxidation by cobalt(III) hangman \(\beta \)-octafluoro corroles J. Am. Chem. Soc. 133 9178CrossRefGoogle Scholar
  16. 16.
    Nakazono T, Parent A R and Sakai K 2013 Cobalt porphyrins as homogeneous catalysts for water oxidation Chem. Commun. 49 6325CrossRefGoogle Scholar
  17. 17.
    Wang D and Groves J T 2013 Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base Proc. Natl. Acad. Sci. USA 110 15579CrossRefGoogle Scholar
  18. 18.
    Ryota Terao, Takashi Nakazono, Alexander Rene Parent and Ken Sakai 2016 Photochemical water oxidation catalysed by a water-soluble copper phthalocyanine ChemPlusChem 81 1064CrossRefGoogle Scholar
  19. 19.
    Nakazono T, Parenta A R and Sakai K 2013 Cobalt porphyrins as homogeneous catalysts for water oxidation Chem. Commun. 49 6325CrossRefGoogle Scholar
  20. 20.
    Lei H, Han A, Li F, Zhang M, Han Y, Du P, Lai W and Cao R 2014 Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production Phys. Chem. Chem. Phys. 16 1883CrossRefGoogle Scholar
  21. 21.
    Jia H, Yao Y, Gao Y, Lu D and Du P 2016 Pyrolyzed cobalt porphyrin-based conjugated mesoporous polymers as bifunctional catalysts for hydrogen production and oxygen evolution in water Chem. Commun. 52 13483CrossRefGoogle Scholar
  22. 22.
    Huang Z, Luo Z, Geletii Y V, Vickers J W, Yin Q, Wu D, Hou Y, Ding Y, Song J, Musaev D G, Hill C L and Lian T 2011 Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation J. Am. Chem. Soc. 133 2068CrossRefGoogle Scholar
  23. 23.
    Blasco-Ahicart M, Soriano-López J, Carbó J J, Poblet J M and Galan-Mascaros J R 2017 Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media Nat. Chem. 10 24CrossRefGoogle Scholar
  24. 24.
    Song F, Ding Y, Ma B, Wang C, Wang Q, Du X, Fua S and Song J 2013 \(\text{K}_{7}[\text{Co}^{{\rm III}}\text{Co}^{{\rm II}}(\text{H}_{2}\text{O})\text{W}_{11}\text{O}_{39}\)]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation Energy Environ. Sci. 6 1170CrossRefGoogle Scholar
  25. 25.
    Folkman S J, Kirner J T and Finke R G 2016 Cobalt polyoxometalate \(\text{Co}_{4}\text{V}_{2}\text{W}_{18}\text{O}_{68}^{10-}\): a critical investigation of its synthesis, purity, and observed \(^{51}\)V quadrupolar NMR Inorg. Chem. 55 5343CrossRefGoogle Scholar
  26. 26.
    Folkman S J and Finke R G 2017 Electrochemical water oxidation catalysis beginning with Co(II) polyoxometalates: the case of the precatalyst \(\text{Co}_{4}\text{V}_{2}\text{W}_{18}\text{O}_{68}^{10-}\) ACS Catal. 7 7CrossRefGoogle Scholar
  27. 27.
    Artero V and Fontecave M 2013 Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42 2338CrossRefGoogle Scholar
  28. 28.
    El Wakkad S E S and Hickling A 1950 The anodic behaviour of metals. Part VI.-Cobalt Trans. Faraday Soc. 46 820CrossRefGoogle Scholar
  29. 29.
    Pandey A D, Jia C, Schmidt W, Leoni M, Schwickardi M, Schüth F and Weidenthaler C 2012 Size-controlled synthesis and microstructure investigation of \(\text{Co}_{3}\text{O}_{4}\) nanoparticles for low-temperature CO oxidation J. Phys. Chem. C 116 19405CrossRefGoogle Scholar
  30. 30.
    Gardner G P, Go Y B, Robinson D M, Smith P F, Hadermann J, Abakumov A, Greenblatt M and Dismukes G C 2012 Structural requirements in lithium cobalt oxides for the catalytic oxidation of water Angew. Chem. Int. Ed. 51 1616CrossRefGoogle Scholar
  31. 31.
    Song F and Hu X 2014 Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst J. Am. Chem. Soc. 136 16481CrossRefGoogle Scholar
  32. 32.
    Dey S, Mondal B and Dey A 2014 An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential Phys. Chem. Chem. Phys. 16 12221CrossRefGoogle Scholar
  33. 33.
    Bose S, Debgupta J, Ramsundar R M and Das S K 2017 Electrochemical water oxidation catalyzed by an in situ generated \(\alpha \)-\(\text{Co(OH)}_{2}\) film on Zeolite-Y surface Chem. Eur. J. 23 8051CrossRefGoogle Scholar
  34. 34.
    Chatterjee S, Sengupta K, Hematian S, Karlin K D and Dey A 2015 Electrocatalytic \(\text{O}_{2}\) reduction by synthetic cytochrome c oxidase mimics: identification of a “Bridging” Peroxo intermediate involved in facile \(\text{4e}^{-}/\text{4H}^{+}\;\text{O}_{2}\)-reduction J. Am. Chem. Soc. 137 12897CrossRefGoogle Scholar
  35. 35.
    Amanullah S, Das P K, Samanta S and Dey A 2015 Tuning the thermodynamic onset potential of electrocatalytic \(\text{O}_{2}\) reduction reaction by synthetic iron-porphyrin complexes Chem. Commun. 51 10010CrossRefGoogle Scholar
  36. 36.
    Mahammed A, Mondal B, Rana A, Dey A and Gross Z 2014 The cobalt corrole catalyzed hydrogen evolution reaction: surprising electronic effects and characterization of key reaction intermediates Chem. Commun. 50 2725CrossRefGoogle Scholar
  37. 37.
    Mondal B, Sengupta K, Rana A, Mahammed A, Botaoshansky M, Ghosh Dey S, Gross Z and Dey A 2013 Cobalt corrole catalyst for efficient hydrogen evolution reaction from \(\text{H}_{2}\text{O}\) under ambient conditions: reactivity, spectroscopy, and density functional theory calculations Inorg. Chem. 52 3381CrossRefGoogle Scholar
  38. 38.
    Nocera D G 2012 The artificial leaf Acc. Chem. Res. 45 767CrossRefGoogle Scholar
  39. 39.
    Jiao F and Frei H 2009 Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts Angew. Chem. Int. Ed. 48 1841CrossRefGoogle Scholar
  40. 40.
    Guo S -X, Liu Y, Lee C -Y, Bond A M, Zhang J, Geletii Y V and Hill C L 2013 Graphene-supported \([\{\text{Ru}_{4}\text{O}_{4}\text{(OH)}_{2}(\text{H}_{2}\text{O})_{4}\}\)(\(\gamma -\text{SiW}_{10}\text{O}_{36})_{2}\)]\(^{10-}\) for highly efficient electrocatalytic water oxidation Energy Environ. Sci. 6 2654CrossRefGoogle Scholar
  41. 41.
    Gao M R, Cao X, Gao Q, Xu Y F, Zheng Y R, Jiang J and Yu S H 2014 Nitrogen-doped graphene supported \({\text{CoSe}}_{2}\) nanobelt composite catalyst for efficient water oxidation ACS Nano 8 3970CrossRefGoogle Scholar
  42. 42.
    Bhaskar A, Banerjee R and Kharul U 2014 ZIF-8@PBI-BuI composite membranes: eloquent effects of PBI structural variations towards gas permeation performance J. Mater. Chem. A 2 12962CrossRefGoogle Scholar
  43. 43.
    Palaniselvam T, Biswal B P, Banerjee R and Kurungot S 2013 Zeolitic imidazolate frameworks (ZIFs) derived hollow core-nitrogen doped carbon nanostructures for oxygen reduction reactions in PEFCs Chem. Eur. J. 19 9335CrossRefGoogle Scholar
  44. 44.
    Aiyappa H B, Thote J, Shinde D B, Banerjee R and Kurungot S 2016 Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst Chem. Mater. 28 4375CrossRefGoogle Scholar
  45. 45.
    Nepal B and Das S 2013 Sustained water oxidation by a catalyst cage-isolated in a metal–organic framework Angew. Chem. Int. Ed. 52 7224CrossRefGoogle Scholar
  46. 46.
    Han J, Wang D, Du Y H, Xi S, Chen Z, Yin S, Zhou T and Xu R 2016 Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation Appl. Catal. A Gen. 521 83CrossRefGoogle Scholar
  47. 47.
    Brunschwig B S, Chou M H, Creutz C, Ghosh P and Sutin N 1983 Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction J. Am. Chem. Soc. 105 4832CrossRefGoogle Scholar
  48. 48.
    Manna P, Debgupta J, Bose S and Das S K 2016 A mononuclear \(\text{Co}^{{\rm II}}\) coordination complex locked in a confined space and acting as an electrochemical water-oxidation catalyst: a “ship-in-a-bottle” approach Angew. Chem. Int. Ed. 55 2425CrossRefGoogle Scholar
  49. 49.
    Mukhopadhyay S, Debgupta J, Singh C, Kar A and Das S K 2018 A Keggin polyoxometalate shows water oxidation activity at neutral pH: POM@ZIF-8, an efficient and robust electrocatalyst Angew. Chem. Int. Ed. 57 1918CrossRefGoogle Scholar
  50. 50.
    Manna P, Tripuramallu B K, Bommakanti S and Das S K 2015 Synthesis, characterization and magnetism of metal-organic compounds: role of positions of the coordinating groups of a meso-flexible ligand in placing anisotropy to exhibit spin-canting behaviour Dalton Trans. 44 2852CrossRefGoogle Scholar
  51. 51.
    Manna P and Das S K 2015 A perceptive approach in assessing rigidity versus flexibility in the construction of diverse metal-organic coordination networks: synthesis, structure and magnetism Cryst. Growth Des. 15 1407CrossRefGoogle Scholar
  52. 52.
    Zhang M -T, Chen Z, Kang P and Meyer T J 2013 Electrocatalytic water oxidation with a copper(II) polypeptide complex J. Am. Chem. Soc. 135 2048CrossRefGoogle Scholar
  53. 53.
    Weinberg D R, Gagliardi C J, Hull J F, Murphy C F, Kent C A, Westlake B C, Paul A, Ess D H, McCafferty D G and Meyer T J 2012 Proton-coupled electron transfer Chem. Rev. 112 4016CrossRefGoogle Scholar
  54. 54.
    Wu L and Navrotsky A 2016 Synthesis and thermodynamic study of transition metal ion (\(\text{Mn}^{2+,}\) \(\text{Co}^{2+}\), \(\text{Cu}^{2+}\), and \(\text{Zn}^{2+})\) exchanged zeolites A and Y Phys. Chem. Chem. Phys. 18 10116CrossRefGoogle Scholar
  55. 55.
    Jiang Y, Li X, Wang T and Wang C 2016 Enhanced electrocatalytic oxygen evolution of \(\alpha \)-\({\text{Co(OH)}}_{2}\) nanosheets on carbon nanotube/polyimide films Nanoscale 8 9667Google Scholar
  56. 56.
    Kim H, Kim Y, Noh Y and Kim W B 2016 Ultrathin amorphous \(\alpha \)-\(\text{Co(OH)}_{2}\) nanosheets grown on Ag nanowire surfaces as a highly active and durable electrocatalyst for oxygen evolution reaction Dalton Trans. 45 13686CrossRefGoogle Scholar
  57. 57.
    Lu X F, Liao P Q, Wang J W, Wu J X, Chen X W, He C T, Zhang J P, Li G R and Chen X M 2016 An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution J. Am. Chem. Soc. 138 8336CrossRefGoogle Scholar
  58. 58.
    Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M and Yaghi O M 2008 High-throughput synthesis of zeolitic imidazolate frameworks and application to \(\text{CO}_{2}\) capture Science 319 939CrossRefGoogle Scholar
  59. 59.
    Huang X-C, Lin Y-Y, Zhang J-P and Chen X-M 2006 Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies Angew. Chem. Int. Ed. 45 1557CrossRefGoogle Scholar
  60. 60.
    Kumar A, Gupta A K, Devi M, Gonsalves K E and Pradeep C P 2017 Engineering multi-functionality in hybrid polyoxometalates: aromatic sulfonium octamolybdates as excellent photochromic materials and self-separating catalysts for epoxidation Inorg. Chem. 56 10325CrossRefGoogle Scholar
  61. 61.
    Reddy P G, Mamidi M and Pradeep C P 2016 An organic inorganic hybrid supramolecular framework material based on \([\text{P}_{2}\text{W}_{18}\text{O}_{62}]^{6-}\) cluster and Yb and Na complexes of pyridine 2,6-dicarboxylic acid: a catalyst for selective oxidation of sulfides in water with \(\text{H}_{2}\text{O}_{2}\) CrystEngComm 18 4272CrossRefGoogle Scholar
  62. 62.
    Kalyani V, Satyanarayana V S V, Singh V, Pradeep C P, Ghosh S, Sharma S K and Gonsalves K E 2015 New polyoxometalates containing hybrid polymers and their potential for nano-patterning Chem. Eur. J. 21 2250CrossRefGoogle Scholar
  63. 63.
    Das S, Kumar S, Garai S, Pochamoni R, Paul S and Roy S 2017 Softoxometalate \([\{\text{K}_{6.5}\text{Cu(OH)}_{8.5}(\text{H}_{2}\text{O})_{7.5}\}_{0.5}\)@K\(_{3}\)PW\(_{12}\)O\(_{40}\)]n (n=1348-2024) as an efficient inorganic material for \(\text{CO}_{2}\) reduction with concomitant water oxidation ACS Appl. Mater. Interfaces 9 35086CrossRefGoogle Scholar
  64. 64.
    Das S, Biswas S, Balaraju T, Barman S, Pochamoni R and Roy S 2016 Photochemical reduction of carbon dioxide coupled with water oxidation using various soft-oxometalate (SOM) based catalytic systems J. Mater. Chem. A 4 8875CrossRefGoogle Scholar
  65. 65.
    Liu H, Sun Y, Chen Y-G, Meng F-X and Shi D-M 2008 Syntheses, structures and properties of three neutral bisupporting heteropolyoxometalates J. Coord. Chem. 61 3102CrossRefGoogle Scholar
  66. 66.
    Dec S F and Herring A M 2004 Structure and dynamics of disodium hydrogen 12-tungstophosphoric acid J. Phys. Chem. B 108 12339CrossRefGoogle Scholar
  67. 67.
    Wang X, Kong C-Y, Lai J-J and Wei M-L 2016 Synthesis, structure and proton conductivity of a complex based on decorated Keggin-type cluster: \(\{[\text{Cu(dmbipy)}(\text{H}_{2}\text{O})_{2}\text{Cl}_{0.5}]_{2}[\text{PW}_{12}\text{O}_{40}]\}{\cdot } 7\text{H}_{2}\text{O}\) (dmbipy=4,4\(^\prime \)-dimethyl-2,2\(\prime \)-bipyridine) J. Cluster Sci. 27 645CrossRefGoogle Scholar
  68. 68.
    Ftini M M and Haddad A 2014 Hydrothermal synthesis and crystal structure of an inorganic-organic hybrid heteropolymolybdate (\(\text{C}_{4}\text{H}_{16}\text{N}_{3})_{2}[\text{NiMo}_{12}\text{O}_{40}]\text{Cl}_{2}{\cdot } 9\text{H}_{2}\text{O}\) Crystallogr. Crystallogr. Rep. 59 949CrossRefGoogle Scholar
  69. 69.
    Li X and Zhang Y 2016 Oxidative dehydration of glycerol to acrylic acid over vanadium-substituted cesium salts of Keggin-type heteropolyacids ACS Catal. 6 2785CrossRefGoogle Scholar
  70. 70.
    Zhao X, Duan Y, Yang F, Wei W, Xu Y and Hu C 2017 Efficient mechanochemical synthesis of polyoxometalate \(\subset \) ZIF complexes as reusable catalysts for highly selective oxidation Inorg. Chem. 56 14506CrossRefGoogle Scholar
  71. 71.
    Sheng H, Zhang H, Song W, Ji H, Ma W, Chen C and Zhao J 2015 Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: an in situ IR spectroscopy study Angew. Chem. Int. Ed. 54 5905CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations