Journal of Chemical Sciences

, 130:20 | Cite as

Quantitative analysis of intermolecular interactions in 2,2’-((4-bromophenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one): insights from crystal structure, PIXEL, Hirshfeld surfaces and QTAIM analysis

  • Subbiah ThamotharanEmail author
  • Jagatheeswaran Kothandapani
  • Subramaniapillai Selva Ganesan
  • Natarajan S Venkataramanan
  • Shankar Madan Kumar
  • Kullaiah Byrappa
  • Judith Percino
  • Fernando Robles
Regular Article


The crystallographic study of 2,2’-((4-bromophenyl)methylene)bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) reveals that the compound crystallizes in the centrosymmetric space group \(P2_{1}/c\). In the solid state, the structure of the title compound exhibits two strong intramolecular \(\hbox {O}{-}\hbox {H}\cdots \hbox { O}\) hydrogen bonding interactions. Further, molecules of the title compound are self-assembled by weak intermolecular \(\hbox {C}{-}\hbox {H}\cdots \hbox {O}, \pi \cdots \pi \) and \(\hbox {H}\cdots \hbox { H}\) and \(\hbox {C}{-}\hbox {H}\cdots \hbox { Br}\) contacts. Various intermolecular interaction that exist in the crystal structure and their energetics are quantified using PIXEL, DFT and QTAIM analyses. Six different motifs are identified from the PIXEL calculation. Lattice energy calculation suggests that the dispersion energy has the highest contribution for the crystal formation. The relative contributions of various intermolecular contacts in the title compound and its closely related analogs are evaluated using Hirshfeld surface analysis and the decomposed fingerprint plots. The common packing features exist between the title compound and its related analogs are identified. The quantitative molecular electrostatic potential surface diagram depicts the potential binding sites which are in good agreement with the crystal structure of the title compound. The structures of title compound in gas and solvent phases are compared with the experimental structure and reveals that they are superimposed very well. The vibrational modes of the monomer and four most stabilized dimers are characterized using both the experimental and DFT calculations. The UV-Vis spectrum is calculated using time dependent-DFT (TD-DFT) method and compared with experimental spectrum. The results indicate that the calculated energy of absorbance and oscillator strength correlate well with the experimental data.

Graphical Abstract

SYNOPSIS. Synthesis and crystal structure analysis of 2,2’-((4-bromophenyl)methylene) bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) are reported. Molecules of this compound are self-assembled by intermolecular \(\hbox {C}{-}\hbox {H}\cdots \hbox {O}\), \(\pi \cdots \pi \) and \(\hbox {H}\cdots \hbox { H}\) and \(\hbox {C}{-}\hbox {H}\cdots \hbox { Br}\) interactions. The relative contributions of various intermolecular interactions in the bromo derivative and its closely related analogs are quantified using theoretical approaches.


Cyclohexene hirshfeld surface keto-enol hydrogen bonding dispersion interactions PIXEL QTAIM TD-DFT 



ST thanks the DST-SERB (SB/YS/LS-19/2014) for research funding. Authors would like to thank Laboratorio Nacional de Supercómputo del Sureste (LNS-BUAP) and Bioinformatics Resources and Application Facility (BRAF), C-DAC Pune for computational work. Authors thank DST-PURSE Lab, Mangalore University for providing single crystal X-ray diffraction facility. SSG thanks Science and Engineering Research Board, DST-SERB (EMR/2016/000317) and Council of Scientific and Industrial Research, CSIR (80(0085)/16/EMR-II) for financial support.

Supplementary material

12039_2018_1421_MOESM1_ESM.pdf (708 kb)
Supplementary material 1 (pdf 707 KB)


  1. 1.
    Shanmugasundram P, Prabahar K J and Ramakrishnan V T 1993 A new class of laser dyes from acridinedione derivatives J. Heterocycl. Chem.  30 1003CrossRefGoogle Scholar
  2. 2.
    Shanmugasundram P, Murugan P, Ramakrishnan V T, Srividya N and Ramamurthy P 1996 Synthesis of acridinedione derivatives as laser dyes Heteroatom Chem.  7 17Google Scholar
  3. 3.
    Mahavi G M, Ali S, Riaz N, Afza N, Malik A, Ashraf M, Iqbal L and Lateef M 2008 Mild and efficient synthesis of new tetraketones as lipoxygenase inhibitors and antioxidants J. Enzyme Inhib. Med. Chem.  23 62CrossRefGoogle Scholar
  4. 4.
    Khan K M, Mahavi G M, Khan M T H, Shaihk A J, Perveen S, Begum S and Choudhary M I 2006 Tetraketones: a new class of tyrosinase inhibitors Bioorg. Med. Chem.  14 344CrossRefGoogle Scholar
  5. 5.
    Goodell J R, Madhok A A, Hiasa H and Ferguson D M 2006 Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity Bioorg. Med. Chem.  14 5467CrossRefGoogle Scholar
  6. 6.
    Lambert R W, Martin J A, Merrett J H, Parkes K E B and Thomas J G 1997 PCT Int. Appl. WO 9706178 Chem. Abstr.  126 212377yGoogle Scholar
  7. 7.
    Jin T-S, Wang A-Q, Ma H, Zhang J-S and Li T-S 2006 The reaction of aromatic aldehydes and 5,5-dimethyl 1,3-cyclohexandione under solvent free grinding conditions Indian J. Chem.  45 B 470Google Scholar
  8. 8.
    Li J-T, Li Y-W, Song Y-L and Chen G-F 2012 Improved synthesis of 2,2’-arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one) derivatives catalyzed by urea under ultrasound Utrason. Sonochem.  19 1CrossRefGoogle Scholar
  9. 9.
    Ganesan S S, Kothandapani J and Ganesan A 2014 Zinc chloride catalyzed collective synthesis of arylmethylene bis(3-hydroxy-2-cyclohexene-1-one) and 1,8-dioxo-octahydroxanthene/acridine derivatives Lett. Org. Chem.  11 682Google Scholar
  10. 10.
    Ilangovan A, Muralidharan S, Sakthivel P, Malayappasamy S, Karuppusamy S and Kaushik M P 2013 Simple and cost effective acid catalysts for efficient synthesis of 8-aryl-1,8-dioxooctahydroxanthene Tetrahedron Lett.  54 491CrossRefGoogle Scholar
  11. 11.
    Ilangovan A, Malayappasamy S, Muralidharan S and Maruthamuthu S 2011 A highly efficient green synthesis of 1,8-dioxo-octahydroxanthenes Chem. Cent. J. 5 81CrossRefGoogle Scholar
  12. 12.
    Vaid R, Gupta S, Kant R and Gupta V K 2016 Domino Knoevenagel/Michael synthesis of 2,2’arylmethylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexen-1-one) derivatives catalyzed by silica-diphenic acid and their single crystal X-ray analysis J. Chem. Sci.  128 967CrossRefGoogle Scholar
  13. 13.
    Sughanya V and Sureshbabu N 2012 2,2’-[3-Bromo-4-hydoxy-5-methoxyphenyl)methylidene]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one Acta Cryst.  E68 o2875Google Scholar
  14. 14.
    Sureshbabu N and Sughanya V 2012 2,2’-[(4-Etho-xyphenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclo-hex-2-en-1one) Acta Cryst.  E68 o2638Google Scholar
  15. 15.
    Bolte M, Degen A, Rühl S 1997 Twinned crystal structure of bis(2-hydroxy-4,4-dimethyl-6-oxo-1-cyclohexenyl)phenylmethane at 150 K Acta Cryst.  C53 340Google Scholar
  16. 16.
    Bolte M, Degen A and Rühl S 2001 2,2’-[(3-Hydroxy-phenyl)methylene]bis(3-hydroxy-5,5-dimethyl-2-cycl-ohexen-1-one) hydrate Acta Cryst.  E57 o170Google Scholar
  17. 17.
    Bolte M, Degen A and Rühl S 2001 Packing considerations of bis-dimedone derivatives Acta Cryst.  C57 446Google Scholar
  18. 18.
    Yang X-H, Zhou Y-H, Zhang M and Hu L-H 2011 3-Hydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)(2-hydr-oxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)methyl]-5,5-dimethylcyclohex-2-en-1-one Acta Cryst.  E67 o492Google Scholar
  19. 19.
    Palakshi Reddy B, Vijayakumar V, Sarveswari S, Ng S W and Tiekink E R T 2010 3-Hydroxy-2-[(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)(3-nitrophenyl)met-hyl]-5,5-dimethylclclohex-2-en-1-one Acta Cryst.  E66 o2806Google Scholar
  20. 20.
    Cagulada A M, Lynch D E and Hamilton D G 2009 Structure and properties of modular components for applications in topological supramolecular chemistry Cryst. Growth Des. 9 825CrossRefGoogle Scholar
  21. 21.
    Panini P and Chopra D 2012 Role of intermolecular interactions involving organic fluorine in trifluoromethylated benzanilides CrystEngComm 14 1972CrossRefGoogle Scholar
  22. 22.
    Panini P and Chopra D 2013 Quantitative insights into energy contributions of intermolecular interactions in fluorine and trifluoromethyl substituted isomeric \(N\)-phenylacetamides and \(N\)-methylbenzamides CrystEngComm 15 3711CrossRefGoogle Scholar
  23. 23.
    Desiraju G R 2005 \(\text{C}-\text{ H }\cdots \text{ O }\) and other weak hydrogen bonds. From crystal engineering to virtual screening Chem. Commun. 2995Google Scholar
  24. 24.
    Thomas S P, Pavan M S and Guru Row T N 2012 Charge density analysis of ferulic acid: Robustness of a trifurcated \(\text{ C }-\text{ H }\cdot \cdot \cdot \text{ O }\) hydrogen bond Cryst. Growth Des.  12 6083CrossRefGoogle Scholar
  25. 25.
    Kaur G, Panini P, Chopra D and Choudhury A R 2012 Structural investigation of weak intermolecular interactions in fluorine substituted isomeric N-benzylideneanilines Cryst. Growth Des. 12 5096CrossRefGoogle Scholar
  26. 26.
    Karanam M and Choudhury A R 2013 Study of halogen-mediated weak interactions in a series of halogen substituted azobenzenes Cryst. Growth Des.  13 4803CrossRefGoogle Scholar
  27. 27.
    Nishio M 2011 The CH/\(\pi \) hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates Phys. Chem. Chem. Phys.  13 13873CrossRefGoogle Scholar
  28. 28.
    Gonthier J F, Steinmann S N, Roch L, Ruggi A, Luisier N, Severin K and Corminboeuf C 2012 \(\pi \)-depletion as a criterion to predict \(\pi \)-stacking ability Chem. Commun.  48 9239Google Scholar
  29. 29.
    Bader R W F 1994 Atoms in Molecules: A Quantum Theory, Oxford University Press, USAGoogle Scholar
  30. 30.
    Bader R W F 1991 A quantum theory of molecular structure and its applications Chem. Rev. 91 893CrossRefGoogle Scholar
  31. 31.
    Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla M C, Polidori G and Camalli M 1994 SIR92-a program for automatic solution of crystal structures by direct methods J. Appl. Cryst.  27 435Google Scholar
  32. 32.
    Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst.  C71 3Google Scholar
  33. 33.
    Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M, van de Streek J 2006 Mercury: visualization and analysis of crystal structures J. Appl. Cryst.  39 453CrossRefGoogle Scholar
  34. 34.
    Wolff S K, Grimwood G J, McKinnon J J, Turner M J, Jayatilaka D and Spackman M A 2012 CrystalExplorer, Version 3.0, University of Western, AustraliaGoogle Scholar
  35. 35.
    Gavezzotti A 2011 Efficient computer modeling of organic materials. The atom-atom, Coulomb-London-Pauli (AA-CLP) model for intermolecular electrostatic-polarization, dispersion and repulsion energies New J. Chem.  35 1360CrossRefGoogle Scholar
  36. 36.
    Gavezzotti A 2003 Calculation of intermolecular interaction energies by direct numerical integration over electron densities. 2. An improved polarization model and the evaluation of dispersion and repulsion energies J. Phys. Chem. B107 2344CrossRefGoogle Scholar
  37. 37.
    Gavezzotti A 2002 Calculation of intermolecular interaction energies by direct numerical integration over electron densities. I. Electrostatic and polarization energies in molecular crystals J. Phys. Chem.  B106 4145CrossRefGoogle Scholar
  38. 38.
    Venkatesan P, Thamotharan S, Ganesh Kumar R and Ilangovan A 2015 Invariant and variable intermolecular interactions in functionalized malonic acid half-esters: X-ray, Hirshfeld surface and PIXEL energy analyses CrystEngComm 17 904CrossRefGoogle Scholar
  39. 39.
    Venkatesan P, Thamotharan S, Ilangovan A, Liang H and Sundius T 2016 Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2\(E)\)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino]prop-2-enoic acid Spectrochim. Acta A153 625CrossRefGoogle Scholar
  40. 40.
    Venkatesan P, Rajakannan V, Venkataramanan N S, Ilangovan A, Sundius T and Thamotharan S 2016 Structural investigation of (2\(E)\)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid: X-ray crystal structure, spectroscopy and DFT J. Mol. Struct. 1119 259CrossRefGoogle Scholar
  41. 41.
    Udayakumar M, Jagatheeswaran K, Ganesan S S, Venkataramanan N S, Madan Kumar S and Byrappa K 2017 Investigation of 9-(2-hydroxy-4,4-dimethyk-6-oxocyclohex-1-en-1yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one: Crystal structure, AIM and NBO analysis J. Mol. Struct. 1133 510CrossRefGoogle Scholar
  42. 42.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr. J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gompert R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2009 Gaussian 09 Revision B 05 Pittsburgh PA: Program, Gaussian Inc., WallingfordGoogle Scholar
  43. 43.
    Gelbrich T and Hursthouse M B 2005 A versatile procedure for the identification, description and quantification of structural similarity in molecular crystals CrystEngComm 7 324CrossRefGoogle Scholar
  44. 44.
    Gelbrich T and Hursthouse M B 2006 Systematic investigation of the relationships between 25 crystal structures containing the carbamazepine molecule or a close analogue: a case study of the XPac method CrystEngComm 8 448CrossRefGoogle Scholar
  45. 45.
    Gelbrich T, Threlfall T L and Hursthouse M B 2012 XPac dissimilarity parameters as quantitative descriptors of isostructurality: the case of fourteen 4,5’-substituted benzenesulfonamido-2-pyridines obtained by substituent interchange involving CF\(_{3}\)/I/Br/Cl/F/Me/H CrystEngComm 14 5454CrossRefGoogle Scholar
  46. 46.
    Zhao Y, Schultz N E and Truhlar D G 2006 Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics and noncovalent interactions J. Chem. Theory Comput. 2 364CrossRefGoogle Scholar
  47. 47.
    Venkataramanan N S 2016 Cooperativity of intermolecular hydrogen bonds in microsolvated DMSO and DMF clusters: a DFT, AIM and NCI analysis J. Mol. Model. 22 151CrossRefGoogle Scholar
  48. 48.
    Boys S F and Bernardi F 1970 The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors Mol. Phys. 19 553CrossRefGoogle Scholar
  49. 49.
    Scalmani G, Frish M J, Mennucci B, Tomsai J, Cammi R and Barone V 2006 Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model J. Chem. Phys. 124 94107CrossRefGoogle Scholar
  50. 50.
    Todd A K 2017 AIMALL version 16.05.18, TK Gristmill Software, Overland Park KS, USAGoogle Scholar
  51. 51.
    Cremer D and Pople J A 1975 General definition of ring puckering coordinates J. Am. Chem. Soc. 97 1354CrossRefGoogle Scholar
  52. 52.
    Bulat F A, Toro-Labbé A, Brinck T, Murray J S and Politzer P 2010 Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies J. Mol. Model. 16 1679CrossRefGoogle Scholar
  53. 53.
    Espinosa E, Molins E and Lecomte C 1998 Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities Chem. Phys. Lett. 285 170Google Scholar
  54. 54.
    Mata I, Alkorta I, Espinosa E and Molins E 2011 Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields Chem. Phys. Lett. 507 185Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Subbiah Thamotharan
    • 1
    Email author
  • Jagatheeswaran Kothandapani
    • 2
  • Subramaniapillai Selva Ganesan
    • 2
  • Natarajan S Venkataramanan
    • 2
  • Shankar Madan Kumar
    • 3
  • Kullaiah Byrappa
    • 4
  • Judith Percino
    • 5
  • Fernando Robles
    • 5
  1. 1.Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia
  2. 2.Department of Chemistry, School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia
  3. 3.PURSE LaboratoryMangalagangotri Mangalore UniversityMangaloreIndia
  4. 4.Department of Materials ScienceMangalore UniversityMangaloreIndia
  5. 5.Lab. de Polímeros, Centro de Química, Instituto de CienciasBenemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAPPueblaMexico

Personalised recommendations