Advertisement

Journal of Chemical Sciences

, Volume 129, Issue 12, pp 1893–1903 | Cite as

Deactivation mechanism of the simultaneous removal of carbonyl sulphide and carbon disulphide over Fe–Cu–Ni/MCSAC catalysts

  • Kai Li
  • Xin Song
  • Chi Wang
  • Yi Mei
  • Xin Sun
  • Ping Ning
Regular Article

Abstract

 The deactivation mechanism of the simultaneous removal of COS and \(\hbox {CS}_{2}\) over a Fe–Cu–Ni/MCSAC catalyst was investigated using SEM/EDS, XPS and in situ DRIFTS methods. The results show that the catalytic hydrolysis of COS and \(\hbox {CS}_{2}\) over the Fe–Cu–Ni/MCSAC catalyst involves two steps: hydrolysis of \(\hbox {COS}/\hbox {CS}_{2}\) and oxidation of \(\hbox {H}_{2}\hbox {S}\). The SEM/EDS and XPS results indicate that that catalytic hydrolysis of \(\hbox {CS}_{2}\) can be achieved by the actions of alkaline groups and active components. When \(\hbox {O}_{2}\) was introduced into the system, oxidation of \(\hbox {H}_{2}\hbox {S}\) occurred \(\textit{via}\hbox {H}_{2}\hbox {S}\rightarrow \hbox {S}\rightarrow \hbox {SO}_{4}^{2-}/\hbox {sulphate}\). In situ DRIFTS experiments indicated that the formation of sulphate may occur as follows: (a) \(\hbox {H}_{2}\hbox {S}+\hbox {O}_{2}\rightarrow \hbox {S}+\hbox {H}_{2}\hbox {O}\), (b) S+\(\hbox {O}_{2}\rightarrow \hbox {S}\)–O, (c) –COO+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O, (d) C–OH+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O. The in situ DRIFTS experiments also indicated that the C–OH groups, –COO groups and \(\hbox {O}_{2}\) played important roles in the deactivation of the catalyst, which was consistent with the XPS results. Meanwhile, the \(\hbox {SO}_{4}^{2-}/\hbox {sulphate}\) content increased during the reaction, which led to its occupancy of the catalyst’s surface activity sites. Additionally, the alkaline groups and active components were removed, which could also result in the deactivation of the catalysts.

Graphical Abstract

SYNOPSIS The deactivation mechanism of the simultaneous removal of COS and \(\hbox {CS}_{2}\) over a Fe–Cu–Ni/MCSAC catalyst was investigated using SEM/EDS, XPS and in situ DRIFTS methods. In situ DRIFTS experiments indicated that the formation of sulphate may occur as follows: (a) \(\hbox {H}_{2}\hbox {S}+\hbox {O}_{2}\rightarrow \hbox {S}+\hbox {H}_{2}\hbox {O}\), (b) S+\(\hbox {O}_{2}\rightarrow \hbox {S}\)–O, (c) –COO+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O, (d) C–OH+\(\hbox {H}_{2}\hbox {S}\rightarrow \)–CH+S–O.

Keywords

Deactivation mechanism simultaneous catalytic hydrolysis of \(\hbox {CS}_{2}\) and COS Fe–Cu–Ni/MCSAC catalyst closed carbide furnace tail gas 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51408282, 21667015), China Scholarship Council (201508530017, 201608530169, 201608740011) and the Analysis and Testing Foundation of Kunming University of Science and Technology.

Supplementary material

12039_2017_1397_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (docx 1211 KB)

References

  1. 1.
    Leman L J, Orgel L E and Ghadiri M R 2006 Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide J. Am. Chem. Soc. 128 20CrossRefGoogle Scholar
  2. 2.
    Sun X, Ning P, Tang X L, Yi H H, Li K, He D, Xu X M, Huang B and Lai R Y 2014 Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over \(\text{ Al }_{2}\text{ O }_{3}\)–K/CAC catalyst at low temperature J. Energy Chem. 23 221CrossRefGoogle Scholar
  3. 3.
    Chowanietz V, Pasel C, Eckardt T, Siegel A and Bathen D 2016 Formation of carbonyl sulfide (COS) on different adsorbents in natural gas treatment plants Oil Gas Eur. Mag. 42 82Google Scholar
  4. 4.
    Zhao S Z, Yi H H, Tang X L, Gao F Y, Yu Q J, Zhou Y S, Wang J G, Huang Y H and Yang Z Y 2016 Enhancement effects of ultrasound assisted in the synthesis of NiAl hydrotalcite for carbonyl sulfide removal Ultrason. Sonochem. 32 336CrossRefGoogle Scholar
  5. 5.
    Qiu J, Ning P, Wang X Q, Li K, Liu W, Chen W and Wang L L 2014 Removing carbonyl sulfide with metal-modified activated carbon Front. Env. Sci. Eng. 10 11CrossRefGoogle Scholar
  6. 6.
    Kuznetsov D L, Filatov I E and Uvarin V V 2016 Processes of carbon disulfide degradation under the action of a pulsed corona discharge Tech. Phys. Lett. 42 822CrossRefGoogle Scholar
  7. 7.
    Yegiazarov Y, Clark J, Potapova L, Radkevich V, Yatsimirsky V and Brunel D 2005 Adsorption-catalytic process for carbon disulfide removal from air Catal. Today 102 242CrossRefGoogle Scholar
  8. 8.
    Huang H M, Young N, Williams B P, Taylor S H and Hutchings G 2006 High temperature COS hydrolysis catalysed by \(\upgamma -\text{ Al }_{2}\text{ O }_{3}\) Catal. Lett. 110 243CrossRefGoogle Scholar
  9. 9.
    Liu Y C, He H and Ma Q X 2008 Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide J. Phys. Chem. A 112 2820CrossRefGoogle Scholar
  10. 10.
    Rhodes C, Riddel S A, West J, Williams B P and Hutchings G J 2000 The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review Catal. Today 59 443CrossRefGoogle Scholar
  11. 11.
    Ning P, Yu L L, Yi H H, Tang X L, Li H, Wang H Y and Yang L N 2010 Effect of Fe/Cu/Ce loading on the coal-based activated carbons for hydrolysis of carbonyl sulfide J. Rare Earth 28 205CrossRefGoogle Scholar
  12. 12.
    Zhu Y Y, Kolar P, Shah S B, Cheng J J and Lim P K 2016 Avocado seed-derived activated carbon for mitigation of aqueous ammonium Ind. Crop. Prod. 92 34CrossRefGoogle Scholar
  13. 13.
    He Q, Dai J L, Zhu L, Xiao K J and Yin Y R 2016 Synthesis and lead absorption properties of sintered activated carbon supported zero-valent iron nanoparticle J. Alloy. Compd. 687 326CrossRefGoogle Scholar
  14. 14.
    Balsamo M, Cimino S, Falco G D, Erto A and Lisi L 2016 ZnO–CuO supported on activated carbon for \(\text{ H }_{2}\text{ S }\) removal at room temperature Chem. Eng. J. 304 399CrossRefGoogle Scholar
  15. 15.
    Li K, Song X, Ning P, Yi H H, Tang X L and Wang C 2014 Energy utilization of yellow phosphorus tail gas: simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide at low temperature Energy Technol. 3 136CrossRefGoogle Scholar
  16. 16.
    Ning P, Li K, Yi H H, Tang X L, Peng J H, He D, Wang H Y and Zhao S Z 2012 Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over modified microwave coal-based active carbon catalysts at low temperature J. Phys. Chem. C 116 17055CrossRefGoogle Scholar
  17. 17.
    Yi H H, Li K, Tang X L, Ning P, Peng J H, Wang C and He D 2013 Simultaneous catalytic hydrolysis of low concentration of carbonyl sulfide and carbon disulfide by impregnated microwave activated carbon at low temperatures Chem. Eng. J. 230 220CrossRefGoogle Scholar
  18. 18.
    Li K, Liu G, Gao T Y, Lu F, Tang L H, Liu S J and Ning P 2016 Surface modification of Fe/MCSAC catalysts with coaxial cylinder dielectric barrier discharge plasma for low-temperature catalytic hydrolysis of \(\text{ CS }_{2}\)  Appl. Catal. A 527 171CrossRefGoogle Scholar
  19. 19.
    Guo H B, Tang L H, Li K, Ning P, Sun X, Liu G, Bao S Y, Zhu T T, Jin X, Duan Z Y and Li Q S 2016 The hydrolysis mechanism and kinetic analysis for COS hydrolysis: A DFT study Russ. J. Phys. Chem. B 10 427CrossRefGoogle Scholar
  20. 20.
    Yi H H, Zhao S Z, Tang X L, Song C Y, Gao F Y, Zhang B W, Wang Z X and Zuo Y R 2014 Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma Fuel 128 268CrossRefGoogle Scholar
  21. 21.
    Li X H, Ren S J, Wei X G, Zeng Y, Gao G W, Y. Ren, Zhu J, Lau K C and Li W K 2014 Concerted or stepwise mechanism? New insight into the water-mediated neutral hydrolysis of carbonyl sulfide J. Phys. Chem. A 118 3503CrossRefGoogle Scholar
  22. 22.
    Wang H Y, Yi H H, Tang X L, Yu L L, He D, Zhao S Z and K Li 2013 Reactivation of CoNiAl calcined hydrotalcite-like compounds for hydrolysis of carbonyl sulfide Ind. Eng. Chem. Res. 52 9331CrossRefGoogle Scholar
  23. 23.
    George Z M 1974 Kinetics of cobalt-molybdate-catalyzed reactions of \(\text{ SO }_{2}\) with \(\text{ H }_{2}\text{ S }\) and COS and the hydrolysis of COS J. Catal. 32 261CrossRefGoogle Scholar
  24. 24.
    Akimoto M and Lana I G D 1980 Role of reduction sites in vapor-phase hydrolysis of carbonyl sulfide over alumina catalysts J. Catal. 62 84CrossRefGoogle Scholar
  25. 25.
    Ju S 1998 Hydrolysis of carbonyl sulfide and carbon disulfide over alumina based catalysts I. Study on activities of COS and \(\text{ CS }_{2}\) hydrolysis J. Nat. Gas Chem. 7 16Google Scholar
  26. 26.
    Hoggan P E, Aboulayt A, Pieplu A, Nortier P and Lavalley J C 1994 Mechanism of COS hydrolysis on alumina J. Catal. 149 300CrossRefGoogle Scholar
  27. 27.
    Wilson C and Hirst D M 1995 High-level ab initio study of the reaction of OCS with OH radicals J. Chem. Soc. Faraday T. 91 793CrossRefGoogle Scholar
  28. 28.
    Sakanishi K, Wu Z H, Matsumura A, Saito I, Hanaoka T, Minowa T, Tada M and Iwasaki T 2005 Simultaneous removal of \(\text{ H }_{2}\text{ S }\) and COS using activated carbons and their supported catalysts Catal. Today 104 94CrossRefGoogle Scholar
  29. 29.
    Aboulayt A, Mauge F, Hoggan P E and Lavalley J C 1996 Combined FTIR, reactivity and quantum chemistry investigation of COS hydrolysis at metal oxide surfaces used to compare hydroxyl group basicity Catal. Lett. 39 213CrossRefGoogle Scholar
  30. 30.
    Li W, Peng J, Zhang L, Yang K, Xia H, Zhang S and Guo S H 2008 Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 Kw Waste Manage. 29 756CrossRefGoogle Scholar
  31. 31.
    Luo Y R 2007 Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press)CrossRefGoogle Scholar
  32. 32.
    Cottrell T L 1958 The Strengths of Chemical Bonds \(2^{{\rm nd}}\) edn. (London: Butterworths Scientific Publications)Google Scholar
  33. 33.
    U.S. Dept. of Commerce 1970 National standard reference data series, National Bureau of Standards, Washington.Google Scholar
  34. 34.
    Benson S W 1965 III-Bond energies J. Chem. Educ. 42 502CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Kai Li
    • 1
  • Xin Song
    • 1
  • Chi Wang
    • 2
  • Yi Mei
    • 2
  • Xin Sun
    • 1
  • Ping Ning
    • 1
  1. 1.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Faculty of Chemical EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China

Personalised recommendations