Journal of Chemical Sciences

, Volume 129, Issue 7, pp 999–1003 | Cite as

A coarse-grained model based on core-oftened potentials for anomalous polymers

  • Ronaldo J C Batista
  • Evy A Salcedo Torres
  • Alan Barros de Oliveira
  • Marcia C B Barbosa
Regular Article


Starting from an anomalous monomeric system, where particles interact via a two-scale core-softened potential, we investigate how the system properties evolve inasmuch as particles are put together to form polymers whose chain size varies from 4 up to 32 monomers. We observed that the density and diffusion anomaly regions in the pressure versus temperature phase diagram of the monomeric system is smaller in the monomeric system when compared with the polymers. We also found that the polymers do not fold into themselves to form solid spheres instead they tend to maximize the chain-fluid contact. Also, Rouse and Reptation models can be employed to describe the polymers diffusive behaviour. But, in contrast to results of simulations where mere interacts via Lennard-Jones potentials, our results shown a much shorter entanglement length of at most 8 monomers.

Graphical abstract

Density and diffusion anomalies are present in the core-softened polymeric systems. The mobility of the macromolecules is Rouse-like for the small polymers and Entangle-like for the large polymers.


Polymers anomaly water 



The authors thank the Brazilian science agencies CNPq, CAPES, and FAPEMIG and for the INCT-Fcx for the financial support. ABO and RJCB thank PROPP-UFOP for partial financial support through the Auxílio Pesquisador Custeio grant. We particularly thank Charusita Chakravarty for the fruitful discussions in the early stages of this project.


  1. 1.
    Chaplin M 2016 Anomalous properties of water Date accessed: October 2016
  2. 2.
    Angell C A, Finch D E and Bach P 1976 Spin-echo diffusion coefficients of water to 2380 bar and -20\(^{\circ }\)C J. Chem. Phys. 65 3063CrossRefGoogle Scholar
  3. 3.
    Thurn H and Ruska J Change of bonding system in liquid Se\(_{x}\)Te\(_{1-1 }\) alloys as shown by density measurements J. Non-Cryst. Solids 22 331Google Scholar
  4. 4.
    Sauer G E and Borst L B 1967 Lambda transition in liquid sulfur Science 158 1567CrossRefGoogle Scholar
  5. 5.
    Kennedy S J and Wheeler J C 1983 On the density anomaly in sulfur at the polymerization transition J. Chem. Phys. 78 1523CrossRefGoogle Scholar
  6. 6.
    Tsuchiya T 1991 The anomalous negative thermal expansion and the compressibility maximum of molten Ge–Te alloys J. Phys. Soc. Jpn. 60 227CrossRefGoogle Scholar
  7. 7.
    Angell C A, Bressel R D, Hemmatti M, Sare E J and Tucker J C 2000 Water and its anomalies in perspective: tetrahedral liquids with and without liquid–liquid phase transitions Phys. Chem. Chem. Phys. 2 1559CrossRefGoogle Scholar
  8. 8.
    Sharma R, Chakraborty S N and Chakravarty C 2006 Entropy, diffusivity, and structural order in liquids with waterlike anomalies J. Chem. Phys. 125 204501CrossRefGoogle Scholar
  9. 9.
    Shell M S, Debenedetti P G and Panagiotopoulos A Z 2002 Molecular structural order and anomalies in liquid silica Phys. Rev. E 66 011202CrossRefGoogle Scholar
  10. 10.
    Poole P, Hemmati M and Angell C A 1997 Comparison of thermodynamic properties of simulated liquid silica and water Phys. Rev. Lett. 79 2281CrossRefGoogle Scholar
  11. 11.
    Sastry S and Angell C A 2003 Liquid-liquid phase transition in supercooled silicon Nat. Mater. 2 739CrossRefGoogle Scholar
  12. 12.
    Franzese G, Malescio G, Skibinsky A, Buldyrev S V and Stanley H E 2001 Generic mechanism for generating a liquid–liquid phase transition Nature (London) 409 692CrossRefGoogle Scholar
  13. 13.
    Netz P A, Raymundi J F, Camera A S and Barbosa M C 2004 Dynamic anomalies of fluids with isotropic doubled-ranged potential Phys. A 342 48CrossRefGoogle Scholar
  14. 14.
    Balladares A L and Barbosa M C 2004 Density anomaly in core-softened lattice gas J. Phys. Condens. Matter 16 8811CrossRefGoogle Scholar
  15. 15.
    de Oliveira A B and Barbosa M C 2005 Density anomaly in a competing interactions lattice gas model J. Phys. Condens. Matter 17 399CrossRefGoogle Scholar
  16. 16.
    de Oliveira A B, Netz P A, Colla T and Barbosa M C 2004 Thermodynamic and dynamic anomalies for a three dimensional isotropic core-softened potential Chem. Phys. 124 084505Google Scholar
  17. 17.
    de Oliveira A B, Netz A, Colla T and Barbosa M C 2006 Thermodynamic and dynamic anomalies for a three dimensional isotropic core-softened potential J. Chem. Phys. 125 124503CrossRefGoogle Scholar
  18. 18.
    Netz P A, Buldyrev S V, Barbosa M C and Stanley H E 2006 Thermodynamic and dynamic anomalies for dumbbell molecules interacting with a repulsive ramp-like potential Phys. Rev. E 73 061504Google Scholar
  19. 19.
    Franzese G and Stanley H E 2002 Liquid–liquid critical point in a Hamiltonian model for water: analytic solution J. Phys. Condens. Matter 14 2201CrossRefGoogle Scholar
  20. 20.
    Franzese G and Stanley H E 2007 Widom line of supercooled water J. Phys. Condens. Matter 19 205126CrossRefGoogle Scholar
  21. 21.
    de Oliveira A B, Netz P A and Barbosa M C 2008 Which mechanism underlies the water-like anomalies in core-softened potentials? Euro. Phys. J. B 64 481CrossRefGoogle Scholar
  22. 22.
    de Oliveira A B, Franzese G, Netz A P and Barbosa M C 2008 Water-like hierarchy of anomalies in a continuous spherical shouldered potentia J. Chem. Phys. 128 064901CrossRefGoogle Scholar
  23. 23.
    de Oliveira A B, Netz P A and Barbosa M C An ubiquitous mechanism for water-like anomalies Europhys. Lett. 85 36001Google Scholar
  24. 24.
    de Oliveira A B, Neves E B, Gavazzoni C, Paukowski J Z, Netz P A and Barbosa M C 2010 Liquid crystal phase and water-like anomalies in a core-softened shoulder-dumbbells system J. Chem. Phys. 132 164505CrossRefGoogle Scholar
  25. 25.
    da Silva J N, Salcedo E, de Oliveira A B and Barbosa M C 2010 Effects of the attractive interactions in the thermodynamic, dynamic and structural anomalies of a two length scale potential J. Chem. Phys. 133 244506CrossRefGoogle Scholar
  26. 26.
    Gallo P and Sciortino F 2012 Ising universality class for the liquid–liquid critical point of a one component fluid: a finite-size scaling test Phys. Rev. Lett. 109 177801CrossRefGoogle Scholar
  27. 27.
    Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular Dynamics J. Comp. Phys. 117 1CrossRefGoogle Scholar
  28. 28.
    Flory P J 1953 Principles of Polymer Chemistry (New York: Cornell University Press)Google Scholar
  29. 29.
    de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca and London: Cornell University Press)Google Scholar
  30. 30.
    P E Rouse 1953 A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers J. Chem. Phys. 21 1272CrossRefGoogle Scholar
  31. 31.
    de Gennes P G 1971 Reptation of a Polymer Chain in Presence of Fixed Obstacles J. Chem. Phys. 55 572CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  • Ronaldo J C Batista
    • 1
  • Evy A Salcedo Torres
    • 2
  • Alan Barros de Oliveira
    • 1
  • Marcia C B Barbosa
    • 3
  1. 1.Departamento de FísicaUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.Coordenadoria Especial de Física, Química e MatemáticaUniversidade Federal de Santa CatarinaAraranguáBrazil
  3. 3.Instituto de FísicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations