Journal of Chemical Sciences

, Volume 129, Issue 7, pp 1045–1051 | Cite as

Role of solvation structure in the shuttling of the hydrated excess proton

Regular Article

Abstract

The classic Marcus electron transfer reaction model demonstrated that a barrierless electron transfer reaction can occur when both the reactant and product have almost similar solvation environment. In our recently developed proton model, we have incorporated the pre-solvation concept and showed that it indeed facilitates the proton diffusion in aqueous solution. In this work, we further quantify the degree of pre-solvation using different structural parameters, e.g., tetrahedral order parameter, average numbers of hydrogen bonds. All the above said parameters exhibit a very strong correlation with the proton share parameter. The more Zundel-like configurations have almost identical solvation environment for both the water molecules and support the pre-solvation concept. However, in the case of Eigen-like configurations, the central hydronium and “special pair” water have distinctly different solvation structures.

Graphical Abstract

Synopsis Hydrated excess proton transfer events in liquid water are highly coupled with local solvent orientations than previously thought. The weak hydrogen bond accepting nature of the hydronium helps to create water-like solvation environment around hydronium. This pre-solvated configuration facilitates the proton transfer process in liquid water. Proton sharing parameter-dependent radial distribution function shows the tiny intensity at 2.0 Å, which arises from the \(4^{\mathrm{th}}\) water molecule solvating the hydronium moiety.

Keywords

Empirical valence bond reactive molecular dynamics pre-solvation proton transfer proton transport 

References

  1. 1.
    Decoursey T E 2003 Voltage-gated proton channels and other proton transfer pathways Physiol. Rev. 83 475Google Scholar
  2. 2.
    Wraight C A 2006 Chance and design - Proton transfer in water, channels and bioenergetic proteins BBA-Bioenergetics 1757 886CrossRefGoogle Scholar
  3. 3.
    Cukierman S 2006 Et tu, Grotthuss! and other unfinished stories BBA-Bioenergetics 1757 876CrossRefGoogle Scholar
  4. 4.
    Swanson J M J, Maupin C M, Chen H, Petersen M K, Xu J, Wu Y and Voth G A 2007 Proton Solvation and Transport in Aqueous and Biomolecular Systems: Insights from Computer Simulations J. Phys. Chem. B 111 4300CrossRefGoogle Scholar
  5. 5.
    Kreuer K D, Paddison S J, Spohr E and Schuster M 2004 Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology Chem. Rev. 104 4637Google Scholar
  6. 6.
    Jorn R, Savage J and Voth G A 2012 Proton Conduction in Exchange Membranes across Multiple Length Scales Acc. Chem. Res. 45 2002CrossRefGoogle Scholar
  7. 7.
    Tse Y-L S, Herring A M, Kim K and Voth G A 2013 Molecular Dynamics Simulations of Proton Transport in 3M and Nafion Perfluorosulfonic Acid Membranes J. Phys. Chem. C 117 8079CrossRefGoogle Scholar
  8. 8.
    Savage J, Tse Y-L S and Voth G A 2014 Proton Transport Mechanism of Perfluorosulfonic Acid Membranes J. Phys. Chem. C 118 17436CrossRefGoogle Scholar
  9. 9.
    Eigen M 1964 Proton Transfer, Acid-Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESS Angew. Chem. Int. Edit. 3 1CrossRefGoogle Scholar
  10. 10.
    Zundel G 2000 Hydrogen Bonds with Large Proton Polarizability and Proton Transfer Processes in Electrochemistry and Biology Adv. Chem. Phys. 111 1Google Scholar
  11. 11.
    von Grotthuss C J T 1806 Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique Ann. Chim. 58 54Google Scholar
  12. 12.
    Agmon N 1995 The Grotthuss Mechanism Chem. Phys. Lett. 244 456CrossRefGoogle Scholar
  13. 13.
    Garczarek F and Gerwert K 2006 Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy Nature 439 109CrossRefGoogle Scholar
  14. 14.
    Roberts S T, Petersen P B, Ramasesha K, Tokmakoff A, Ufimtsev I S and Martinez T J 2009 Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions Proc. Natl. Acad. Sci. U.S.A. 106 15154CrossRefGoogle Scholar
  15. 15.
    Roberts S T, Ramasesha K, Petersen P B, Mandal A and Tokmakoff A 2011 Proton Transfer in Concentrated Aqueous Hydroxide Visualized Using Ultrafast Infrared Spectroscopy J. Phys. Chem. A 115 3957CrossRefGoogle Scholar
  16. 16.
    Fayer M D 2013 Ultrafast Infrared Vibrational Spectroscopy (Boca Raton, Florida: CRC Press)CrossRefGoogle Scholar
  17. 17.
    Mandal A, Ramasesha K, De Marco L and Tokmakoff A 2014 Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy J. Chem. Phys. 140 204508CrossRefGoogle Scholar
  18. 18.
    Fournier J A, Johnson C J, Wolke C T, Weddle G H, Wolk A B and Johnson M A 2014 Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster Science 344 1009CrossRefGoogle Scholar
  19. 19.
    Thämer M, De Marco L, Ramasesha K, Mandal A and Tokmakoff A 2015 Ultrafast 2D IR spectroscopy of the excess proton in liquid water Science 350 78CrossRefGoogle Scholar
  20. 20.
    Tuckerman M, Laasonen K, Sprik M and Parrinello M 1995 Ab-Initio Molecular-Dynamics Simulation of the Solvation and Transport of Hydronium and Hydroxyl Ions in Water J. Chem. Phys. 103 150CrossRefGoogle Scholar
  21. 21.
    Lobaugh J and Voth G A 1996 The Quantum Dynamics of an Excess Proton in Water J. Chem. Phys. 104 2056CrossRefGoogle Scholar
  22. 22.
    Tuckerman M E, Marx D, Klein M L and Parrinello M 1997 On the Quantum Nature of the Shared Proton in Hydrogen Bonds Science 275 817CrossRefGoogle Scholar
  23. 23.
    Schmitt U W and Voth G A 1999 The Computer Simulation of Proton Transport in Water J. Chem. Phys. 111 9361CrossRefGoogle Scholar
  24. 24.
    Marx D, Tuckerman M E, Hutter J and Parrinello M 1999 The Nature of the Hydrated Excess Proton in Water Nature 397 601CrossRefGoogle Scholar
  25. 25.
    Tuckerman M E, Marx D and Parrinello M 2002 The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417 925CrossRefGoogle Scholar
  26. 26.
    Day T J F, Soudackov A V, Cuma M, Schmitt U W and Voth G A 2002 A Second Generation Multistate Empirical Valence Bond Model for Proton Transport in Aqueous Systems J. Chem. Phys. 117 5839CrossRefGoogle Scholar
  27. 27.
    Izvekov S and Voth G A 2005 Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited J. Chem. Phys. 123 044505CrossRefGoogle Scholar
  28. 28.
    Lapid H, Agmon N, Petersen M K and Voth G A 2005 A bond-order analysis of the mechanism for hydrated proton mobility in liquid water J. Chem. Phys. 122 014506CrossRefGoogle Scholar
  29. 29.
    Marx D 2006 Proton transfer 200 years after von Grotthuss: Insights from ab initio simulations. ChemPhysChem 7 1848CrossRefGoogle Scholar
  30. 30.
    Chandra A, Tuckerman M E and Marx D 2007 Connecting solvation shell structure to proton transport kinetics in hydrogen-bonded networks via population correlation functions Phys. Rev. Lett. 99 145901CrossRefGoogle Scholar
  31. 31.
    Wu Y J, Chen H N, Wang F, Paesani F and Voth G A 2008 An improved multistate empirical valence bond model for aqueous proton solvation and transport J. Phys. Chem. B 112 467CrossRefGoogle Scholar
  32. 32.
    Markovitch O, Chen H, Izvekov S, Paesani F, Voth G A and Agmon N 2008 Special pair dance and partner selection: Elementary steps in proton transport in liquid water J. Phys. Chem. B 112 9456CrossRefGoogle Scholar
  33. 33.
    Berkelbach T C, Lee H S and Tuckerman M E 2009 Concerted Hydrogen-Bond Dynamics in the Transport Mechanism of the Hydrated Proton: A First-Principles Molecular Dynamics Study Phys. Rev. Lett. 103 238302CrossRefGoogle Scholar
  34. 34.
    Swanson J M J and Simons J 2009 Role of Charge Transfer in the Structure and Dynamics of the Hydrated Proton J. Phys. Chem. B 113 5149CrossRefGoogle Scholar
  35. 35.
    Marx D, Chandra A and Tuckerman M E 2010 Aqueous Basic Solutions: Hydroxide Solvation, Structural Diffusion, and Comparison to the Hydrated Proton Chem. Rev. 110 2174Google Scholar
  36. 36.
    Knight C, Maupin C M, Izvekov S and Voth G A 2010 Defining Condensed Phase Reactive Force Fields from ab Initio Molecular Dynamics Simulations: The Case of the Hydrated Excess Proton J. Chem. Theory Comput. 6 3223CrossRefGoogle Scholar
  37. 37.
    Tuckerman M E, Chandra A and Marx D 2010 A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases J. Chem. Phys. 133 124108CrossRefGoogle Scholar
  38. 38.
    Knight C and Voth G A 2012 The Curious Case of the Hydrated Proton Acc. Chem. Res. 45 101CrossRefGoogle Scholar
  39. 39.
    Knight C, Lindberg G E and Voth G A 2012 Multiscale reactive molecular dynamics J. Chem. Phys. 137 22A525CrossRefGoogle Scholar
  40. 40.
    Park K, Lin W and Paesani F 2012 A Refined MS-EVB Model for Proton Transport in Aqueous Environments J. Phys. Chem. B 116 343CrossRefGoogle Scholar
  41. 41.
    Hassanali A, Giberti F, Cuny J, Kuhne T D and Parrinello M 2013 Proton transfer through the water gossamer Proc. Natl. Acad. Sci. U.S.A. 110 13723CrossRefGoogle Scholar
  42. 42.
    Hassanali A A, Giberti F, Sosso G C and Parrinello M 2014 The role of the umbrella inversion mode in proton diffusion Chem. Phys. Lett. 599 133CrossRefGoogle Scholar
  43. 43.
    Tse Y L, Knight C and Voth G A 2015 An analysis of hydrated proton diffusion in ab initio molecular dynamics J. Chem. Phys. 142 014104CrossRefGoogle Scholar
  44. 44.
    Peng Y, Swanson J M J, Kang S-g, Zhou R and Voth G A 2015 Hydrated Excess Protons Can Create Their Own Water Wires J. Phys. Chem. B 119 9212CrossRefGoogle Scholar
  45. 45.
    Marx D and Hutter J 2009 In Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (New York: Cambridge University Press)Google Scholar
  46. 46.
    Yoo S, Zeng X C and Xantheas S S 2009 On the phase diagram of water with density functional theory potentials: The melting temperature of ice I-h with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals J. Chem. Phys. 130 221102CrossRefGoogle Scholar
  47. 47.
    Yoo S and Xantheas S S 2011 Communication: The effect of dispersion corrections on the melting temperature of liquid water J. Chem. Phys. 134 121105CrossRefGoogle Scholar
  48. 48.
    Biswas R, Tse Y L, Tokmakoff A and Voth G A 2016 Role of Presolvation and Anharmonicity in Aqueous Phase Hydrated Proton Solvation and Transport J. Phys. Chem. B 120 1793CrossRefGoogle Scholar
  49. 49.
    Ando K and Hynes J T 1997 Molecular Mechanism of HCl Acid Ionization in Water: Ab initio Potential Energy Surfaces and Monte Carlo Simulations J. Phys. Chem. B 101 10464CrossRefGoogle Scholar
  50. 50.
    Ando K and Hynes J T 1999 Acid-Base Proton Transfer and Ion Pair Formation in Solution Adv. Chem. Phys. 110 381Google Scholar
  51. 51.
    All the terms in a diagonal element are described by the classical force fields, with the exception of the intermolecular term between hydronium and water in which contains two extra “repulsive terms”. See the original MS-EVB3 paperGoogle Scholar
  52. 52.
    Wu Y J, Tepper H L and Voth G A 2006 Flexible simple point-charge water model with improved liquid-state properties J. Chem. Phys. 124 024503CrossRefGoogle Scholar
  53. 53.
    Plimpton S 1995 Fast Parallel Algorithms for Short-Range Molecular Dynamics J. Comp. Phys. 117 1CrossRefGoogle Scholar
  54. 54.
    Dang L X 1995 Mechanism and Thermodynamics of Ion Selectivity in Aqueous-Solutions of 18-Crown-6 Ether - a Molecular-Dynamics Study J. Am. Chem. Soc. 117 6954CrossRefGoogle Scholar
  55. 55.
    Martyna G J, Klein M L and Tuckerman M 1992 Nose-Hoover Chains - the Canonical Ensemble Via Continuous Dynamics J. Chem. Phys. 97 2635CrossRefGoogle Scholar
  56. 56.
    Allen M P and Tildesley D J 1989 In Computer Simulation of Liquids (New York: Oxford University Press)Google Scholar
  57. 57.
    Jagoda-Cwiklik B, Cwiklik L and Jungwirth P 2011 Behavior of the Eigen Form of Hydronium at the Air/Water Interface J. Phys. Chem. A 115 5881CrossRefGoogle Scholar
  58. 58.
    Chau P L and Hardwick A J 1998 A new order parameter for tetrahedral configurations Mol. Phys. 93 511Google Scholar
  59. 59.
    Luzar A and Chandler D 1996 Effect of environment on hydrogen bond dynamics in liquid water Phys. Rev. Lett. 76 928CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics The University of ChicagoChicagoUSA

Personalised recommendations